

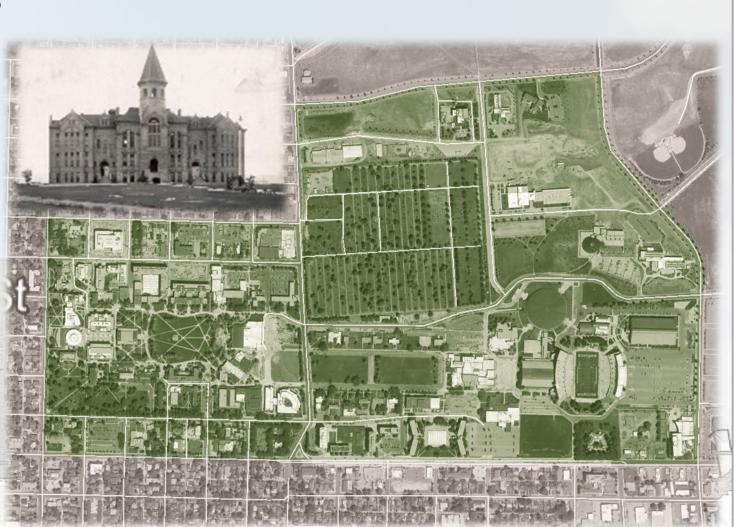
Analysis and Implementation of a Chilled Water Storage System at the University of Wyoming

Presented By:

Forrest Selmer, P.E. Deputy Director of Utilities Management-University of Wyoming Bill Koller, P.E. Mechanical Engineer-GLHN Architects and Engineers

Presentation Objectives

- Case Study-University of Wyoming
 - Project Background
 - > Process
 - > Analysis
 - > Implementation
- Review Technical Aspects of Thermal Energy Storage Systems



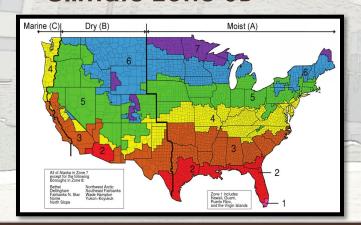
University of Wyoming

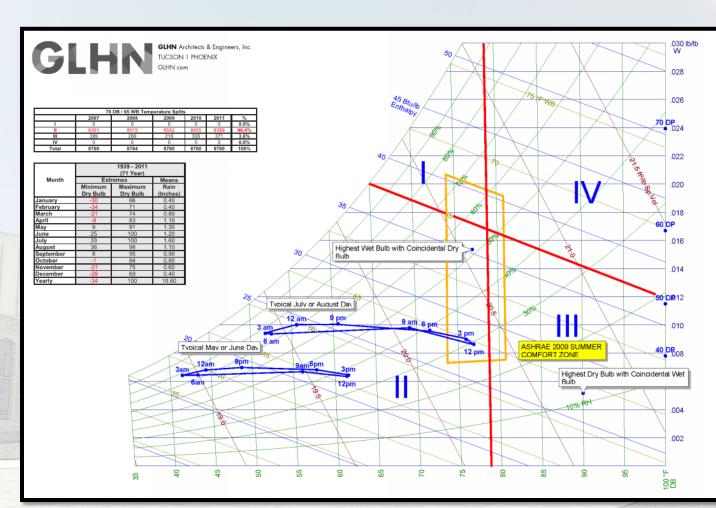
General Campus Statistics

- Founded in 1886
- Located in Laramie Wyoming
- Student Enrollment-9,500 (Laramie) – 14:1 Student/Faculty
 Ratio
- Buildings on Steam-87 (6.0M sqft)
- Buildings on CHW-29 (1.8M sqft)
- 400 Division 1 Student Athletes

University of Wyoming

GLHN ARCHITECTS & ENGINEERS, INC

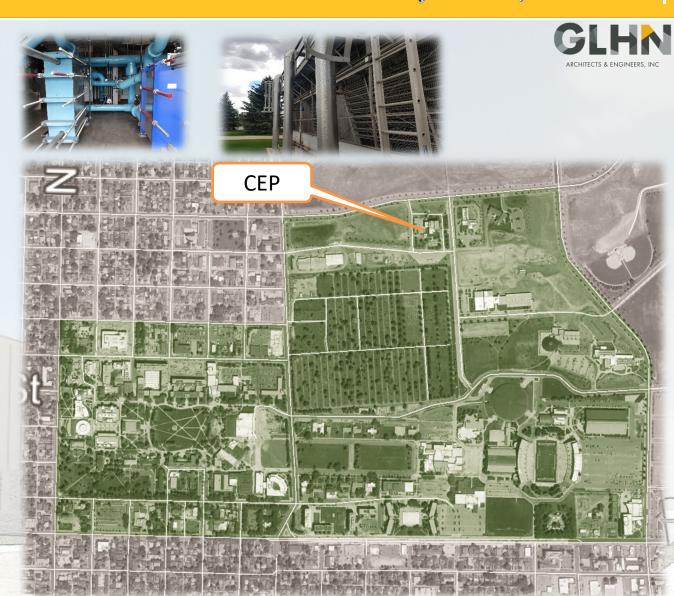

LARAMIE,

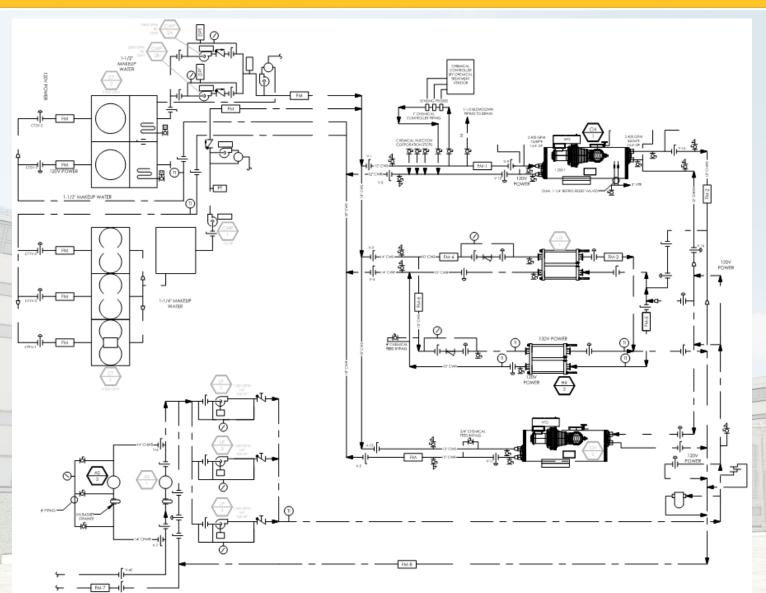

WY WEATHER

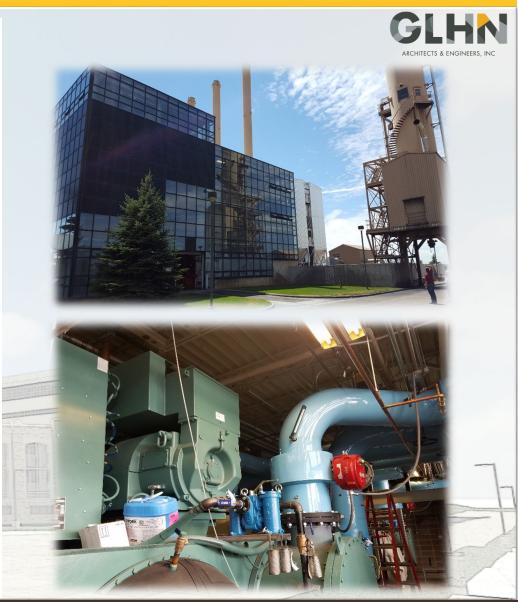
DATA

Laramie Design Conditions

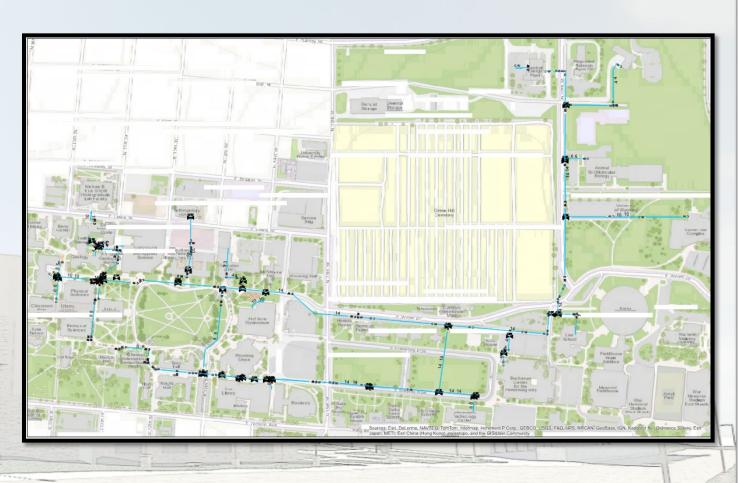
- 7,200' Above Sea Level
- Summer 1%
 - 82 DB, 58 WB
 - 80 CDD (65F)
- Winter 1%
 - -3 DB
 - 8,690 HDD (65F)
- Climate Zone 6B






Campus Cooling Statistics

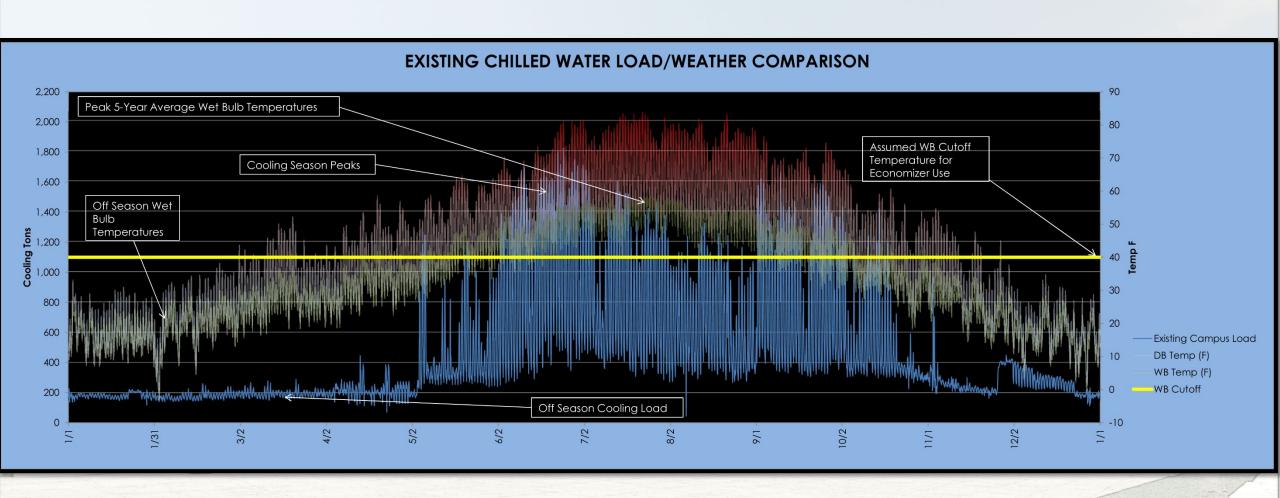
- Central Energy Plant (CEP)
 - (2) Water Cooled Chillers
 - 2,400 Tons of Chiller Capacity
 - Variable Primary CHW Pumping
 - Current Peak Load-1,600 Tons
 - (2) Plate and Frame Hydronic Economizers ~ 1,000 T
 - 6 months of "Free Cooling"
 - 525 HP of CHW/CW Pumping Capacity
 - 29 Connected Buildings



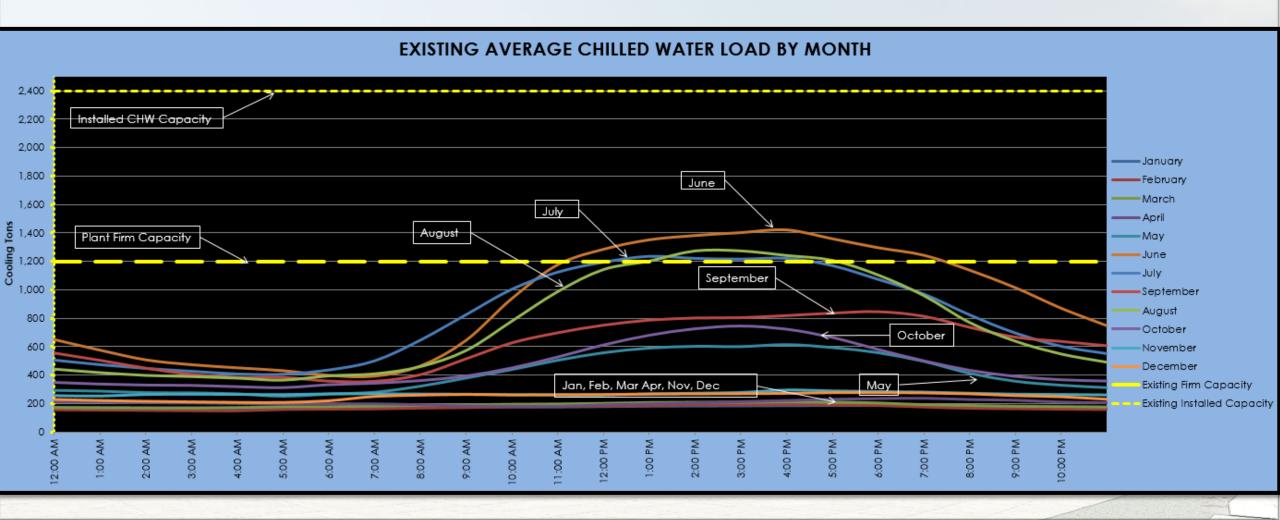
GLHNI ARCHITECTS & ENGINEERS, INC

Campus Cooling Statistics

- District Cooling System
 - Supplies 1/3 of Campus Area
 - Combination of Direct Buried and Tunnel Piping
 - 14" CHWS/R Mains
 - 17,000' of CHW Distribution
 - 200,000 gallons

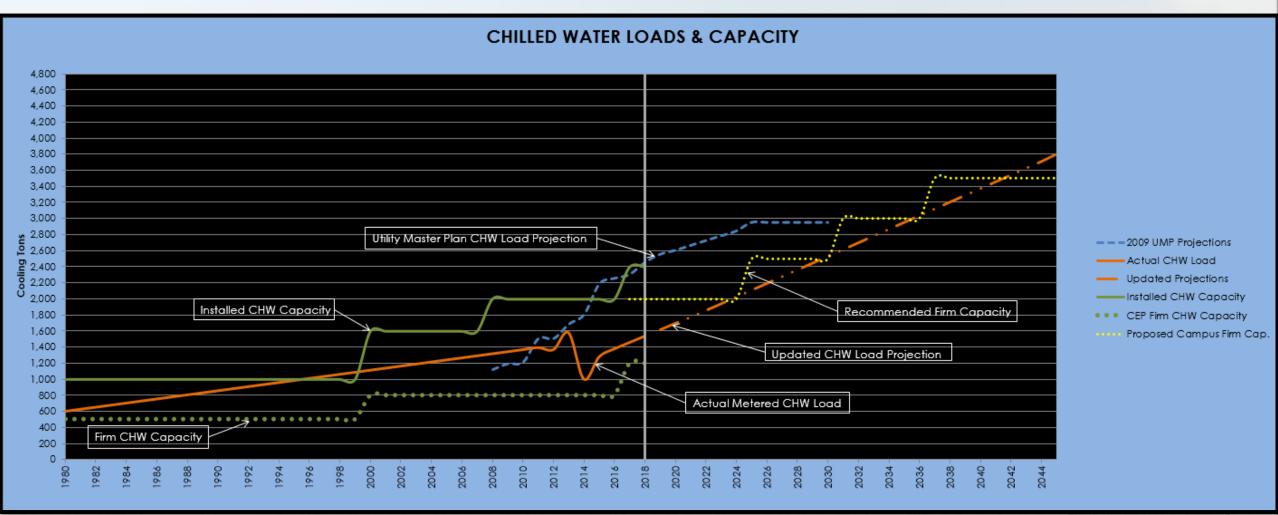


Annual Cooling Load Profile





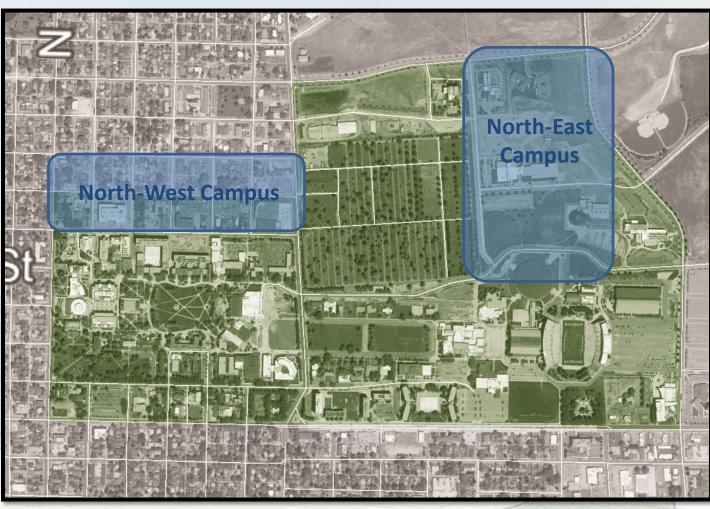
Monthly Cooling Load Profiles



Capacity vs Load Growth

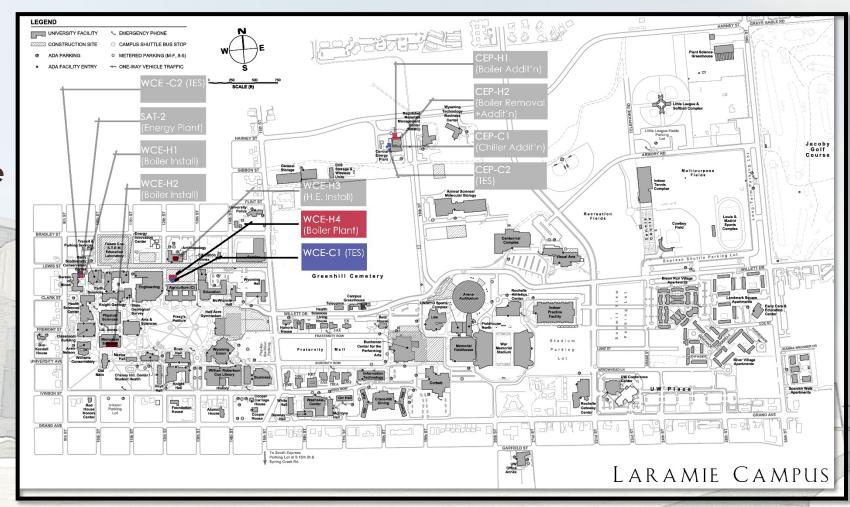
Load Projections

Capacity vs Load Growth



Projected Major Growth Area

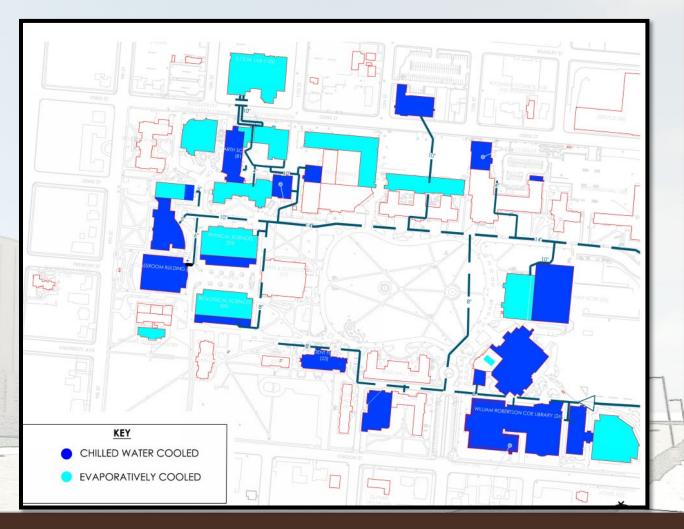
- North-West Campus-Project Focus
- North-East Campus



GLHN ARCHITECTS & ENGINEERS, INC

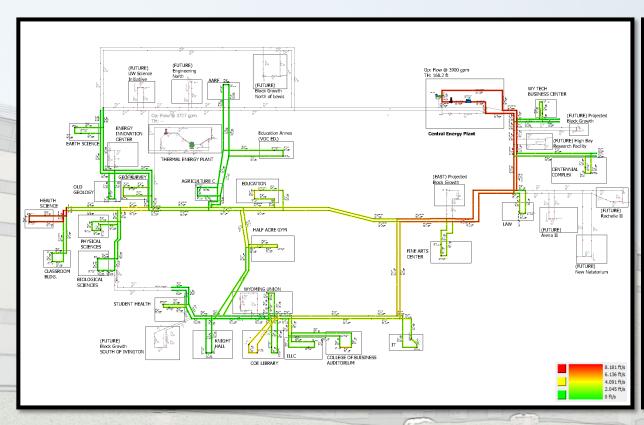
Cooling Options Available

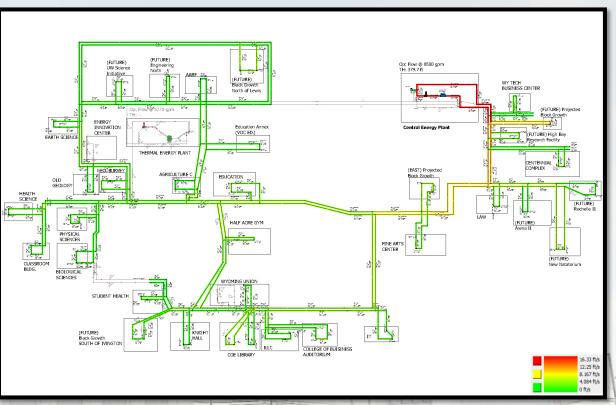
- Evaporative Cooling
- CEP Expansion
- Increased Distribution
- Another Chiller Plant
- Thermal Energy Storage



West Campus Evaporative vs Chilled

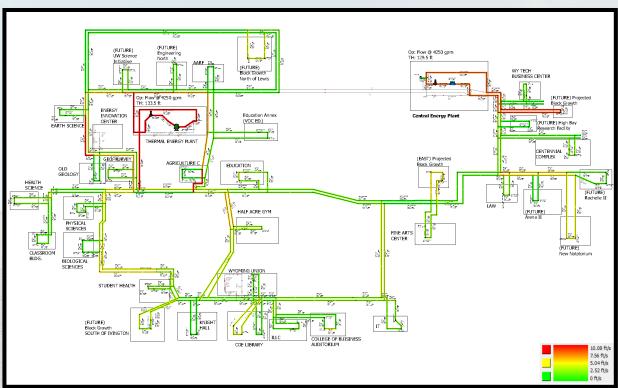
Water Cooled Facilities


- Large Ductwork
- Tall Floor to Floor Heights
- Difficult with Retrofits
- Humidity
- 58F Discharge Air Temp
- Continuous Maintenance of RO



CHW Flow Analysis-Existing vs. 30 Year Projected

Existing Load/Distribution


Projected Load w/ no Change to Distribution Network

CHW Flow Analysis-Various Solutions

Projected with Campus Interconnect

Projected Load West Campus Insertion

GLHN ARCHITECTS & ENGINEERS, INC

CEP Expansion

GLHN ARCHITECTS & ENGINEERS, INC

West Campus Plant

Site Comparison

Site Comparison Matrix

50,	MPARISION		Options		
	Item	SAT-1	North of Agriculture	SAT-2	Bureau of Mines
**	City Front	_			
A0	Site Facts	_			
					Site is limited, plant constructed between
A1	Area	2	Site area is flexible at this location	0	existing bldg, and electrical transformers
A2	Adjacent Bldgs	1		0	
					Existing bldgs about the same height as
A3	Adjacent Hts	-1	Existing bldgs higher than plant	1	plant.
A4	0	2	Made with almost a second	,	No adverse impact with planned open
A4	Open Space		Works with planned open space	'	space
			Existing bldgs adjacent lack architec-		
			tural context to existing campus. Newly		
			constructed on east and north are		Existing bldgs newer and older and fit with
A5	Historic context	0	compatible with the campus guidelines		architectural context of existing campus.
			Engineering and Agriculture - Exterior		B
A6	Materials	0	stucco system	1	Bureau of Mines - Sandstone and Brick Bureau of Mines details reflect the older
A7	Forms/Visual image	0	Engineering and Agriculture are mono- lithic and generic in form	,	campus bldas.
A/	Forms/ visual image		iffile and generic in form		campus biags.
ВО	Site Environment				
			No or minimal impact to existing drain-		
B1	Drainage / topography	0	age	0	No or minimal impact to existing drainage
B2	Wind	_			
			Toward Lewis St/vehicles, pedestrians,		Toward Lewis St/vehicles, pedestrians, less
В3	Cooling tower drift	-1	Anthropology	1	impact at this location
	t-t-t-		Possible intakes impact on Anthropolo-		N
B4 B5	Intake Exhaust	-2	gy	0	None Known
B6	Solar access	-1	Mostly shaded in winter months	1	Solar access throughout the year
-			Two story plant does not allow room for	·	Two story plant does not allow room for
В7	Solar energy production	0	solar panels on roof	0	solar panels on roof
B8	Daylighting	2	Good potential for daylighting facility	2	Good potential for daylighting facility
B9	Orientation	2	No significant orientation issues	2	No significant orientation issues
					With bldg, directly adjacent to existing
			Separated bldg. minimizes impact to		structure sound attenuation will be re-
B10	Noise Internal/external	0	adjacent structures	-1	quired.
B11	Future development	-			
B12	Em Generator/Fuel Tank	1	Adequate site area or located on roof	0	Adequate site area or located on roof
B13	CoGen	1	Adequate site area or located on roof	0	

COMPARISION		Site	Site Options						
	Item	SAT-1	North of Agriculture	SAT-2	Bureau of Mines				
			Create views to new landscaped areas		Create views to existing landscaped are-				
B14	Views	1	possible.	1	as possible.				
C0	Utilities	0	- 1 1						
C1	Tunnels		Existing to E and S of Bldg	0	Existing to the S of bldg entering BofM				
	Electric		Fed from existing west campus substa-		Fed from existing west campus substation				
C2	-	0	tion (1300 ft)	1	(500ft)				
C3	Gas	0	Avail in Lewis	0	Avail in Lewis				
C4	Steam	1	10" Avail. Close to site	0	10" Avail, 450 ft, to site				
C5	Chilled water lines	_	New line required in Lewis		New line required in Lewis				
C6	Sewer	0	2 - 10" lines avail.	0	8" line avail.				
C7	Storm water	0	10" line avail.	0	12" lines avail.				
C8	Water	0	10" line avail.	0	8" line avail.				
C9	Data	0	Avail.	0	Avail.				
D0	Environmental								
	Previous uses		Previous developed area, some sub		Demolition of existing structure some				
D1	rievious uses	-1	surface features may be present	-1	known and unknown conditions.				
D2	Archeology	0	None known	0	None known				
D3	Contamination	0	None known	0	None known				
EO	Access/Traffic								
E1	Vehicular								
E2	Service	2	Service access on 2 sides of structure	2	Service access on 2 sides of structure				
E3	Maintenance	2	Maintenance easily accessible	- 1	Maintenance accessible				
E4	Waste/Trash	1	Waste/Trash in close proximity	1	Waste/Trash in close proximity				
E5	Bicycles	1	Area available for bicycle parking	1	Area available for bicycle parking				
			Adequate access and does not im-		Adequate access and does not impede				
E6	Pedestrian	1	pede current circulation	1	current circulation				
					Limited space for on-site parking but par-				
E7	On-site parking	1	Adequate space for on-site parking	0	allel parking avaiable on the street				
	Total	11		12					

LCCA

GLHN ARCHITECTS & ENGINEERS, INC

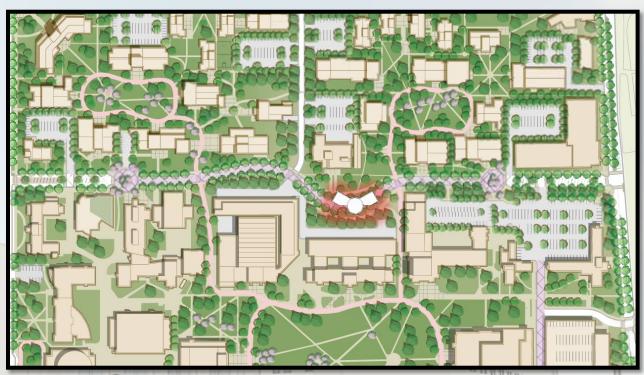
Life Cycle Cost Analysis-Basic Steps

- Facility Condition of Existing System (Equipment, Distribution, Efficiencies)
- Identify Campus Loads (Current and Projected)
- Determine Potential Options
- Identify 30 Year Costs
- Capital-New and Renewal, Equipment, Distribution
- O&M-Utility, Labor, Taxes, Fees
- Compare Performance
- Determine Cost of Financing
- Generate Cash Flow Diagrams
- Compare Net Present Value
- Identify Intangibles
- Perform a Sensitivity Study

Analysis Results

2016 Proposed Solution

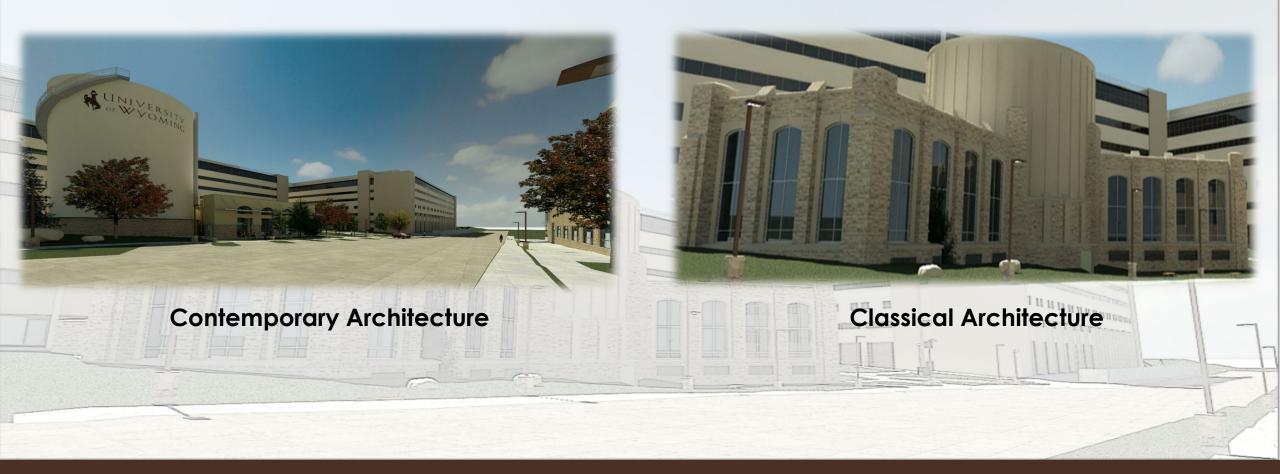
- New Heating Plant on West Campus
- Chilled Water Thermal Storage on West Campus



Appearance

Visually Acceptable?

- Overall Architectural Design
- Scale
- Existing Views
- Integration with Masterplan


University's Long Range Development Plan

Appearance

Architectural Design

Appearance

Compare Costs and Acceptable Solutions

- 2018 Exterior Design Advisory Committee
 - Architectural Design
 - Location

Thormal

Thermal Energy Storage

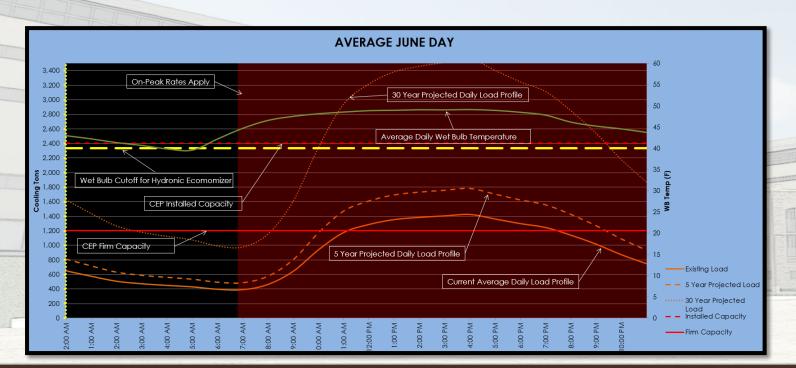
Concept of TES-Pros

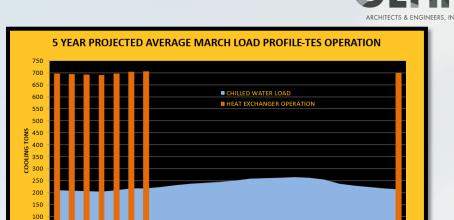
- An Energy Storage System
- Utilize Existing Infrastructure
- Advantageous To:
 - Nighttime Wetbulb Depression
 - Electric Rate Structure
 - Full Load Efficiency
 - Flexibility in Plant Operations
 - Firm Capacity
 - Reduction in Equipment Capacity Requirements
 - Reduced Emissions at Electric Utility
 - Possibility of Fire Water Storage

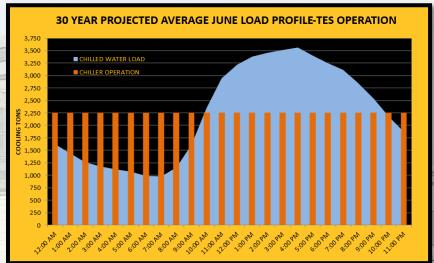
Thermal Energy Storage

Concept of TES-Cons

- Size of Tank
- Tank Appearance
- Importance of Chemical Treatment
 - PH, Corrosion Protection,
 Biological Control
- System Pressure Control
- Importance of System DT
- TES Tank Design
 - Insulation
 - Diffuser Design


=-


Thermal Energy Storage

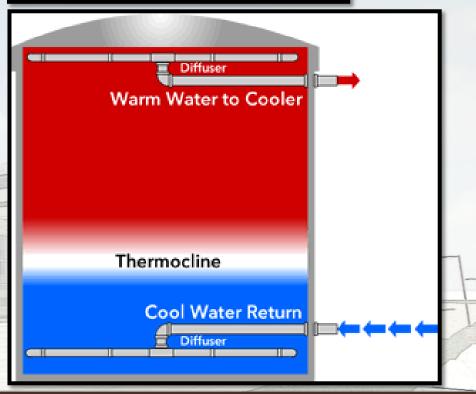


Engineering Design

- Project Chilled Water Hourly Load Profile
- Determine "Free" vs "Chiller" Cooling Hours
- Identify Associated Costs
- Daily ton-hour Production/Storage Requirements

To tay or the take the tay or the

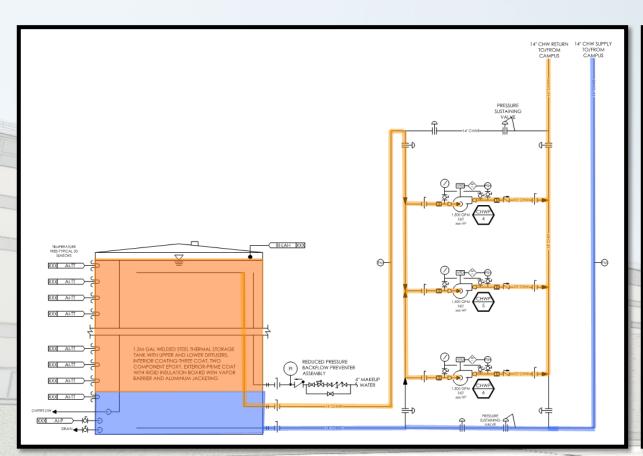
Thermal Energy Storage

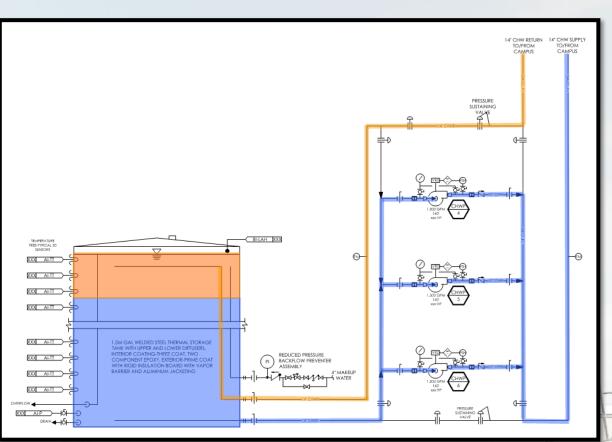


Engineering Design

- Size Tank
 - System DT
 - Tank Height to Diameter Ratio-Efficiency
 - Diffuser Design-Thermocline Efficiency (2-10')
- Determine Required Volume
- Determine Tank Cost (\$1.50/gal)

					Tank Diar	Tank Diameter (Ft)			
			55	60	65	70	75	80	
Tank Height (Ft)	100	- \$2.67M		\$3.17M	\$3.72M	\$4.32M	\$4.96M	\$5.64M	
	95	-	\$2.53M	\$3.01M	\$3.54M	\$4.10M	\$4.71M	\$5.36M	
	90	-	\$2.40M	\$2.86M'	\$3.35M	\$3.89M	\$4.46M	\$5.08M	
	85	-	-	\$2.70M	\$3.16M	\$3.67M	\$4.21M	\$4.79M	
	80	-	-	\$2.57M	\$2.98M	\$3.45M	\$3.97M	\$4.51M	
	75	_	-	-	\$2.79M	\$3.24M	\$3.72M	\$4.23M	
	70	-	-	-	\$2.61M	\$3.02M	\$3.47M	\$3.95M	
	65	-	-	-	-	\$2.81M	\$3.22M	\$3.67M	
	60	-	-	-	-	\$2.59M	\$2.97M	\$3.38M	
	55	-	-	-	-	-	\$2.73M	3.10M	
	50	-	-	-	-	-	-	\$2.82M	
	45	-	-	-	-	-	-	-	




Thermal Energy Storage

GLHN ARCHITECTS & ENGINEERS, INC

Engineering Design

Charging Schematic

Discharging Schematic

University of Wyoming

Outcome

- Upsize (1) Chiller at Existing CEP
- 20 Deg F Coil Requirements
- 11,000 Ton-Hr Tank
- 1.8M Gallon
- 15' Tank Burial Depth
- Northern Location
- Pumps Integral to New HW Plant
- Minimal Distribution Upgrades
- Groundbreaking Summer 2019

Thank You!

Open Question Session

Contact Information

Frosty Selmer: Fselmer@uwyo.edu

Bill Koller: Bkoller@glhn.com