Developing and Managing a Laboratory Ventilation Management Plan (LVMP)

Tom Checksfield

Senior Vice President

919-319-4290 tchecksfield@3flow.com

2019

Banff,

Alberta

RMA

WCUPPA

Blue Skies Reaching New Heights

Agenda:

• What is Smart Lab?

- Ventilation Risk Assessments and Establishing ACR'S
- Demand for Ventilation
- Fume Hood Upgrades
- Labs are Dynamic Managing Change and Staying Sustainable

Improve Safety, Minimize Waste and Facilitate Success in Critical Workplace Environments

Smart Labs[™] evolved over 25 years

Organizations can improve safety, reduce risk and operate more effectively.

- Attract & retain top talent
- Ensure safety
- Minimize waste
- Improve sustainability
- Maximize resilience
- Accommodate change
- Mitigate risk
- Enhance return on investment

Laboratories are expensive and complicated

- Average Lab Size ≈ 100,000 ft²
- Construction_(USA) ≈ \$45 Million to \$100 Million
- Energy Cost ≈ \$700,000/year (Avg. \$7 per ft²)

45% to 85% of the energy is consumed by Fume Hoods and the Lab HVAC Systems

- Lab HVAC and Fume Hoods ≈ 30% of Construction Cost
- Fume Hood Installation ≈ \$25,000 \$50,000 each
- Fume Hood Annual Cost ≈ \$2,400 \$5,000 per year

As much as <u>50% of HVAC energy is wasted</u> by excess airflow, inefficient fume hoods and improper modulation of flow

The goal is high performance Smart Labs

• Effective

- Support research and development
- Flexible to change

• Safe

- Protect people from exposure
- Compliance with standards

• Efficient

- Minimum energy consumption
- Minimum operating costs

• Sustainable

- Minimum carbon footprint
- Maintainable
- Demonstrable Return on Investment

UCI Smart Lab

Campus Wide Aggregate Energy Reduction

You may have many buildings, limited budgets and competing interests

Success requires a combination of efforts

- Design and Mechanical Attributes
 - High performance fume hoods
 - Variable Air Volume Systems
 - High efficiency mechanical systems
 - Building information and control systems
- Management and Leadership
 - Occupant Information and Floor Plans
 - Ventilation Safety Demand Assessment
 - System Diagrams and Airflow Specifications
 - Airflow Management Program (AMP)
 - LVMP Manager / Coordinator

Lab Ventilation Management Plan

Success of Smart Labs[™] at UCI

Laboratory B	uilding	Before "S	Smart Lab	" Retrofit	After "Smart Lab" Retrofit					
Name	Type [*]	Estimated Avg. ACH	VAV or CV	Was more efficient than code?	kWh Savings	Therm Savings	Total Savings			
Croul Hall	Р	6.6	VAV	~ 20%	41%	60%	55%			
McGaugh Hall	В	9.4	CV	no	40%	66%	47%			
Reines Hall	Р	11.3	CV	no	70%	76%	72%			
Natural Sciences II	P, B	9.1	VAV	~ 20%	48%	62%	50%			
Biological Sciences 3	В	9	VAV	~ 30%	45%	81%	60%			
CALIT2	Е	6	VAV	~ 20%	46%	78%	62%			
Gillespie Neurosciences	М	6.8	CV	~ 20%	58%	81%	61%			
Sprague Hall	М	7.2	VAV	~ 20%	58%	82%	71%			
Hewitt Hall	М	8.7	VAV	~ 20%	58%	77%	69%			
Engineering 3	Е	8	VAV	~ 30%	59%	78%	61%			
	_	8.2	VAV	~ 20%	55%	76%	58%			

The Roadmap to High Performance Labs and Critical Control Environments

Achieving high performance labs and critical control environments requires a process

- I. Strategic Planning
- II. Team Responsibilities and Training
- III. Systems Theory
- **IV.** Implementation
 - A. Phase 1A Plan
 - **B.** Phase 1B Assess
 - **C.** Phase 2 Optimize
 - **D.** Phase 3 Manage
- V. Management Plan

Smart Labs[™] provides a roadmap to success

Coordination of stakeholders is the key to achieving sustainable, high performance, Smart Labs Leadership, Coordination and Collaboration

Management

Research ——

Environmental Health & Safety

Engineering

Maintenance

- Space Planning

Purchasing

Common Objectives Realistic Goals Teamwork

Smart Labs[™] Optimization Process

A replicable and scalable process that combines services and products to achieve safe, energy efficient and sustainable laboratories.

Roadmap to Smart Labs™ High Performance Ventilation Systems

P	lan a	nd Ass	ess		Optim	Manage					
Plan	Contract	Design / As	ssessment	Contracts	Construction	on/Renovation	Performance Management				
Stakeholde Review Timeline	Funding er & Contracts	Assess Assess Exhaust HVAC & and Air Controls Supply	Establish Performance Project & Operating SOW & Specs Budget	Feasibility Analysis & Funding	Engineering & Specifications	M&V Benchmark Performance	LVMP Maintenance Periodic & Smart Labs Monitoring Reports				
Timeline Lab Safety & Energy Profile (RELSA)		Lab Ventilation Risk Assessment (LVRA)	PIMs, ECMs, & Energy Model	Project Contracts	Construction Renovation & System Upgrades	TAB Lab & Ventilation & Management CX Plan & Training	System Operating Tests Managemen Change(MC	Lab & LVRA Hood Trigger Tests Points			

Smart Labs[™] - Phased Implementation

Roadmap to High Performance Labs

Roadmap to High Performance Labs

Qualitative Scoping Study

- 1A-A Assemble Team of Stakeholders and Provide Training
- 1A-B Inventory and Survey Lab Buildings
- 1A-C Assess Condition of Labs and Determine Key Performance Indicators
- 1A-D Appraise and Profile Lab Buildings
- Deliverable: Select lab buildings and prioritize projects

Qualitative Scoping Study

• Facility and Building Qualifying Tool

- Select & Prioritize Best Projects First

• Key Performance Indicators

- Size & Space Allocation
- Energy Use & Operating Costs
- State of the Systems
- Energy Reduction Potential

Building Profile Report

- Classification and Categorization
- Potential for Energy Reduction
- Estimated Level of Effort, Project Costs & Potential Payback

Attribute	Lab Building Profile Category								
 Health and State of the Systems Energy Reduction Potential Project LOE & Complexity Return on Investment (Payback) 	Class	Class	Class	Class					
	A	B	C	D					

Roadmap to High Performance Labs

Roadmap to High Performance Labs

Quantitative Assessment

- 1B-A Assemble building design and operating documents
- 1B-B Conduct Lab Ventilation Risk Assessment
- 1B-C Conduct System Operating Tests to evaluate current operation
- 1B-D Develop airflow specifications for each system
- 1B-E Energy Model and Analysis
- 1B-F Determine Performance Improvement Measures
- Deliverable: Scope of Work for Phase 2 Optimization

Ventilation drives both safety and energy use

Different types of labs have different design and operating requirements

- Chemical Labs
- Biology Labs (BSL ₂₋₄)
- Radiological Labs
- Nanotechnology Labs
- Clean Rooms
- Equipment Labs

Risk + Functional Requirements = Demand for Ventilation

Optimize Airflow Control and Energy Consumption

October 2018

3Flow

The Demand for Ventilation establishes the design and operating requirements

- Safety (Risk)
 - Fume Hood Flow
 - Contaminant Removal (ACH)
 - Isolation (Lab Pressurization)

• Comfort & Productivity

- Temperature
- Humidity
- Occupancy & Utilization

Minimum flow and range of modulation required to meet the functional requirements of the occupants

Achieving proper distribution or airflow requires establishing proper airflow specifications.

Proprietary & Confidential. Copptighte©220188 3 Flow, inc. All rights reserved.

Laboratory Ventilation Risk Assessment (LVRA)

Conception of the second secon

Where's the risk? What flow is required?

The LVRA categorizes risk using control bands based on Hazard Emission Scenarios

Risk Control Band	Description	
0	Negligible	
1	Low	
2	Moderate	
3	High	
4	Very High	
5	Extreme	

Hazard Emission Scenario

- Exposure Limit (concentration)
- Quantity
 - Generation Rate
- Concentration Profile

Rating of risk factors enables RCB assignment

Total Score	Control Band	Description
< 16	0	Negligible
16-40	1	Low
41-64	2	Moderate
65-88	3	High
89-120	4	Very High
121-160	5	Extreme

Extreme

Risk Factors and RCBs differentiate labs and identify areas of concern

Airflow specifications are recommended according to the RCB and validated prior to use

Laboratory Environment	Risk Control Band										
Specifications	0	1	2	3	4	5					
Minimum Effective Occupied ACH (1)	N/A	2	4	6	8	10					
Minimum Effective Unoccupied ACH (2)	N/A	1	2	3	4	N/A					
Recirculation of Lab Air	Yes	Yes	Filtered	Internal	Internal	No					
Lab Pressure "w.g.	Neutral	Neutral	< -0.005	< -0.01	< -0.05	= > -0.05					
Room Monitor	N/A	N/A	N/A	Review	Yes	Yes					
Airlock/Vestibule	N/A	N/A	N/A	N/A	N/A	Yes					
Enthalpy Wheels	Yes	Yes	Review	No	No	No					
Emergency Purge	No	No	No	No	Review	Yes					
Ventilation Effectiveness (VEFF) (3)	<= 2	< =1.5	<= 1	< 1	< 1	< <1					

Risk Control Bands Alleviating Risk Through Optimization

	Lab	En	viro	nme	ent -	Col	ntrc	ol Ba	nd	Para	me	ter	^S	
	Lab	Hazard Rating	Material Quantity	Generation Potential	Generation (M, E, I, C)	Generation Locations	ECD Availability	Appropriate ECDs	Dynamic	Housekeepn	Air Change Effectivenes	eness Control Band Min. ACH 3 8 4 10 4 10 4 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
		7	2	12	1	2	1	1	2	1	2			Min. ACH 8 10 10
	503	3	3	3	4	4	1	1	1	2	2	3	8	
	504	5	5	2	5	5	1	1	2	4	4	4	10	
	505	4	3	2	4	5	1	1	1	3	4	4	10	-
	500	2	2	2	4	A	4			2				-
	Lak	<u>) En</u>	viro	nme	<u>ent -</u>	Cor	ntro	Bar	nd I	Para	met	ers	S	
	Lab	Hazard Rating	Material Quantity	Generation Potential	Generation (M, E, I, C)	Generation Locations	ECD Availability	Appropriate ECDs	Dynamic	Housekeeping	Air Change Effectiveness	Control Band	Min. ACH	
		7	2	12	1	2	1	1	2	1	з			
	503	3	3	3	4	4	1	1	1	2	2	3	8	
-	504	5	5	2	5	5	1	1	2	4			10	-
	505	4	3	2	4	5	1	1	1	3	1	3	8	
	506	2	2	3	4	4	1	1	2	2	4	3	8	
	507	2	3	2	5	4	1	1	1	2	4	3	8	
ľ	508	3	2	1	E	2	1	1	2	2	2	2	erol Min. ACH Min. ACH 10 4 10 4 10 FS rol Min. ACH 8 10 8 8 8 8 8 8 8 6 6 6 6	
Ŀ		-	3	T	5	2	T	T	2	-	_	_	Ũ	n. H J O - - - - -
	508A	1	1	1	5	1	1	1	1	2	4	2	6	

The LVRA applied to ECDs and Labs can be used to optimize performance of the airflow systems

Risk ratings can be used to optimize exhaust fan and stack design

Demand determines the airflow specifications

												Exhaust						
		D 1	.					Su	nnly	Transfer			Qex for Ext	haust Devices	Room Exh	aust Flows	Resu	ltant
		Ris	Risk Control Band					54	ppry	Flow	Hood ID	Open Area -			Max/Min based on Exh Devices, dP, Cond., or ACH		ACH	
Room #	Room Name	Area (ft ²)	Height (ft)	Volume (ft ³)	Room Type	Heat Load Label	Control Band #	Room Flow @ Max (cfm)	Room Flow @ Min (cfm)	Greater of Door and 10% Max Exh (cfm)		ft2	Qex at FV	Sash Closed - Unoccupied	Room Max Flow (cfm)	Room Min Flow (cfm)	Max ACH	Min ACH
728	Research Lab	325	9.0	2925	Stg	N	2	193	193	100	FH - CAV	7.9	792	146	293	293	6	6
720	Pesearch Lab	285	8.8	3360	Lab	N	Л	1/22	1/22	150	FH - CAV	7.9	792	702	1592	1582	28	28
730	Research Lab	202	0.0	3309			:		• • • • •		FH - CAV	7.9	792	792	1303	1383	20	20
732	NMR	900	14.5	13050		Α	ILLIO	\mathbf{W}	pec	S	FH - CAV	7.9	792	792	4222	4222	19	19
									_		FH - CAV	7.9	792	792				
											FH - CAV	7.9	792	792				
724	Basaarah Lah	0.000	145	12050		N.1		5224	5224	575	FH - CAV	18.5	1847	1847	EROC	EROC	27	27
754	Research Lab																27	27
								~ ~										
								es	19r		\mathbf{O} V	V						
									'O '	• • •		•						
736	Research Lab									r							11	11
742	Pesearch Lab								U								26	26
742	Research Lab								Ŭ	-							20	20
744	Research Lab					•				_							27	27
			⁻ h		ro	t i/	col			\mathbf{P}			iro	ma	n	tc		
				CU	I C		Lal			<u>v i v</u>	CU	U				LJ		
											EH - CAV	18.5	1847	1847				
746	Research Lab	900	14.5	13050	Lab	N	4	5231	5231	575	FH - CAV	7.9	792	792	5806	5806	27	27
											FH -	.		d M-				
							MII	ı an		ax	FH -		іап	u ma	X			
							S	nnlv			FH -	y h		t Flo	w			
							Ju	hhi		VV	FH -		uu 3		••			
											FH - CAV	18.5	1847	1847		I		

Optimize Airflow Control and Energy Consumption

Theoretical Required Flow

Actual **—** Measured **—** Flow BAS Reported Flow

3Flow

Optimize Airflow Control and Energy Consumption

Maximum savings are achieved by reducing total airflow and improving system efficiency

3Flow

Roadmap to High Performance Labs

October 2018

Identify measures to improve performance (PIMs) and conserve energy (ECMs)

- Remove or Hibernate Unnecessary Hoods
- Modify Inefficient Hoods
- Replace & Retrofit Traditional Fume Hoods
- Upgrade CAV & VAV Controls
- Optimize Temperature & Humidity Controls
- Install Demand Control Ventilation
- Reduce / Reset System Static Pressure
- Optimize Exhaust Fan and AHU Operation
- Implement Energy Recovery

Upgrading Fume Hood Performance

Evaluation of Fume Hood Performance at 3Flow

- Manufacturer Prototype Tests
- Factory Acceptance Tests (As Manufactured)
 - EPA, NIH, GSK, Merck, Pfizer, UNC, Duke, etc.
- Extensive Field Tests
 - EPA Research Triangle Park Fume Hood Optimization
 - UCI Low Flow Hood Study
 - State of Wisconsin High Performance Hood Study

Traditional vs. High Performance Fume Hoods

Fume hoods can be upgraded to improve performance, reduce flow and conserve energy

Upgrading Performance of Fume Hoods How It Works?

Advanced Aerodynamic Design

- 1. Vortex Displacement Sash Handle Displaces & dilutes vortex behind sash
- 2. <u>Aerodynamic Airfoil Sill</u>

Improves flow over work surface

- 3. <u>Ergonomic Safety Shields</u> Provides moveable barrier for Users
- 4. <u>Contaminant Capture Baffle</u> Directs airflow through the hood
- 5. <u>Bypass Distribution Panel</u>

Helps sweep contaminants from hood interior

Containment, Dilution, Capture & Removal

Examples of Upgraded Fume Hoods

Understanding risk has enabled development of new technologies for safer and more efficient labs

Roadmap to High Performance Labs

Airflow Management Program for Labs is comprised of multiple elements

Operating Manual for Building Systems Performance Management Plan

- Accurate Drawings / Diagrams
- Up to Date Equipment Inventories
- Lab Ventilation Risk Matrix
- Appropriate Flow Specifications
- Control Sequences and Parameters
- Key Performance Indicators and Metrics
 - Operational Boundary Conditions
- Standard Operating Procedures
 - Routine Tests & Maintenance Tasks
 - Schedules and Management of Change

• Adequate Training for Stakeholders and Staff

Protect Return On Investment

ECD & Ventilation Maintenance / Test Schedule

The LVMP Manager helps integrate and coordinates the efforts of key stakeholders

October 2018

Smart Labs starts with training of stakeholders and the assignment of a LVMP Manager

- Program Managers & Supervisors
 - Facilities Engineering
 - Operations and Maintenance
 - EH&S & Lab Management

LVMP Manager

Maintenance

Building Operators

Lab Personnel

New methods, technologies and training deliver benefits of safer and more energy efficient labs

- Government Universities
- Chemical
- Pharmaceutical Biotechnology Industry

UNIVERSITY OF CALGARY

Indiana University Health

The right flow in the right place at the right time!

Thank You!

Questions

Tom Checksfield

919-319-4290 www.3flow.com tchecksfield@3flow.com

