DLR Group

Thermal Mass 2.0 Innovative Phase Change Materials for High Performance Design

Networking. Mentorship. Professional Development.

listen.DESIGN.deliver

presenting today

Prem Sundharam AIA, LEED AP, CEM Principal, Global Sustainability Leader

Harvey Bryan FAIA, FASES, LEED AP

Professor, Research Scientist at Julie Ann Wrigley, Global Institute of Sustainability

Liz Brack EIT, Structural Designer **Associate**, Adjunct Faculty at ASU

Course Description

Storing thermal energy in building materials such as concrete, stone, etc. has been used as an effective passive design strategy for high performance buildings in years past.

What's new with thermal mass?

Learn about the research and application of phase change materials in steel frame construction through compelling case studies.

Learning Objectives

- 1. Attendees will learn the history of Phase Change Materials and basic building science concepts.
- 2. Attendees will be able to compare PCM technology against other high performance strategies from a performance and economics standpoint and apply integrating PCM into design
- 3. Attendees will learn about applying research to curriculum integration for students as they take advantage of the advanced metering and sensing equipment installed.

DLR Group

2030 Commitment Guiding Principles

ASSESS RENEWABLE

ENCOURAGE POST OCCUPANCY ENERGY MEASUREMENT & VERIFICATION

LIVE SUSTAINABLY IN OUR OFFICE

TELL OUR STORY

LEAD THIS CHALLENGE

HISTORY OF PHASE CHANGE MATERIALS (PCM)

INNOVATIVE BIO-PCM

THERMAL MASS 2.0 DLR GROUP RESEARCH

RESEARCH CURRICULUM INTEGRATION

THERMAL COMFORT RESEARCH

HISTORY OF PHASE CHANGING MATERIALS

Toile 6

Phase Change Materials (PCM)

What is Phase Change Material (PCM)?

DLR Group HISTORY OF PHASE CHANGE MATERIALS

MIT Solar House II (Hottel 1947)

Interior of One of the Test Cells

Dover House, Dover MA., 1948

Eleanor Raymond & Maria Telkes at House in 1948

DLR Group HISTORY OF PHASE CHANGE MATERIALS

MIT Solar House V (Johnson 1978)

DLR Group HISTORY OF PHASE CHANGE MATERIALS

Mirror Blinds Reflect Sunlight to the Ceiling

PCM was Placed in the Ceiling and Charged by the Reflected Sunlight

Interior of the Solar House V

Installing the PCM in the Ceiling

ASU's PCM Test Structures

1.10

JUNE 1.05 1.00 OCCURENCE OF PEAK 0.95 PEAK LOAD (kW) 0.80 WITHOUT PCM TIME SHIFT 0.75 WITH PCM 0.70 16:00 17:30 18:15 19:00 19:00 20:30 0:15 1:00 1:45 2:30 3:15 3:15 3:45 21:15 22:00 22:45 23:30 23:30 4:45 5:30 6:15 2:15 5:15 1:30 8 8 8 15 0:00 0:45 TIME (Hours)

Murugananthan, Tempe AZ., 2010

Capillary Hydronic Charging

www.bekausa.com

Carefree, AZ., 2001

Animations

Animations

Mock-Up Model on Ceiling System

SHADE – ASU 2013 Solar Decathalon House

In Irvine, CA (2013)

In Phoenix, AZ (2015)

APS ET-2 TOU Rate

Typical Temperature Profiles

Typical Energy Profiles

Findings

- Hydronic Radiant Cooling coupled with PCM can be a very effective distributed energy storage strategy
- SHADE meet 6 hours of passive performance (APS later changed their TOU window to 3 – 8pm now a 5 hour window)
- Achieve 30% energy savings (kWh)
- Achieved 90% demand (KW) reduction during on-peak, but had a 25% demand increase during off-peak
- With further modifications SHADE can achieve even better performance

Future Work

- Explore the use of other TOU and Demand rate plans
- Explore the integration with the 9.5 KW photovoltic system
- Develop an model (based on the SHADE data) to be used to stimulate Radiant/PCM strategies for other building types
- Explore which Demand/Storage technologies can be embedded in the building itself versus those that can be managed by operational changes
- Energy and Demand savings have been proven, the next item to look at are comfort issues – that is what we are proposing for the Canyon View H.S. project

RMATION....SPORTS SCHEL **INNOVATIVE BIO-PCM**

Benefits for Using PCMs in Buildings A Proven, Cost Effective, Long-Term, Maintenance Free Means to Reduce HVAC Power Consumption While Maintaining Desired Ambient Temperature.

Reduces HVAC Power Consumption

Reduces building HVAC power consumption by 25-35% and cycling frequency by 10-15%

Attractive Payback Period

In most locales, power savings will return fullyinstalled cost in 3 years or less

Extends HVAC Equipment Lifetime

Reduced runtime & compressor cycling extends equipment lifetime

Reduces Carbon Footprint

1,000 telecom shelters with ENRG Panel reduces annual power consumption by more than 10,000,000 kWh – a CO2 emissions equivalent of 7.5 million pounds of coal burned

No Operating Cost, Long Lifetime

Operates passively, requiring no power and no maintenance

Types of Phase Change Materials

	Low enviro impact	Tunable Transition Temps	High- energy density (BTU/Ib.)	Long lifetime (Years)	Low cost of productio n (\$/ft ²)	Solid-to- gel & Solid-to- solid	Non-toxic	Non- corrosive	Non- flammabl e
BioPCM	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Paraffin PCMs	×	×	\checkmark	×	×	×	×	\checkmark	×
Salt hydrate PCMs	\checkmark	×	×	×	\checkmark	×	×	×	\checkmark

What is Bio-Based PCM? Bio-Based PCM has the Following Characteristics

- Renewable made from sustainably-sourced, renewable plant based by-products
- Engineered melting and freezing temperature ranges
- Maintenance free, passive
- Long life > 85 years, outlives the average building
- Stable and repeatable chemical and physical properties
- Fire-resistant tested to meet IBC and CBC requirements
- Non-toxic, 100% biodegradable & recyclable

PCMs & Conventional Thermal Mass

- Conventional thermal mass has been used for centuries. High mass design provides thermal comfort in extreme climates. Thermal mass retains cool night temperatures during the heat of the day. Conversely, it retains the heat of the day during the cool of the night.
- PCMs provide the benefits of high mass design without the cost of a high mass design.

Equivalent thickness of conventional materials to match 1 inch thick layer of BioPCM.

How Do PCMs Work?

PCMs act like a thermal sponge, as the temperature becomes warmer they melt and become a gel, absorb and store heat.

PCM stays within its engineered temperature range when in between phases (latent).

DLR Group INNOVATIVE BIO-PCM

Bio-Based PCM Application Types

Above Dropped or TGrid Ceiling

- Simplest Installation &/or Retrofit
- Allows benefits to be applied to existing buildings
 - Good fit for energy upgrade market
 - Good fit for building retrofit
 - Good fit for repurposed buildings/spaces

In Walls

- Typically new construction
- Allows for strategic placement in space based on building orientation
- PCM is made to fit standard width stud bays with flanges for easy attachment

Bio-Based PCM Application Types

Roof

- Installed with furring above sheeting or below roof deck
- Can be below insulation or above insulation
- Can be applied to existing buildings

Custom

- Applications challenging spaces
 - Back up cooling applications
 - Industrial processes
 - Telecomm/Data Center

THERMAL MASS 2.0 DLR GROUP RESEARCH

PCM Application in New Construction

Guiding Principles Canyon View

Values Framework Key Performance Indicators (KPIs)

- 1. Students: Academic Achievement with College and Career Readiness.
- 2. Students: **Engagement** attendance rate, capture rate, out-of-boundary attendance.
- 3. Staff: Retention.
- 4. Staff: Collaboration.
- 5. Staff: Participation, **extra-curricular** after school activities.
- 6. Community: Facility **utilizations** including accelerator.
- 7. Community: Business partnerships.
- 8. Administration: Total cost of ownership.

Students and Staff Experience

Community Experience

Administration Experience

LEED Integrative Process | Optimize Energy Designed to meet Code - 30% Design Best Practices - 60% Strategies with a Premium - 10%

31

EUI

kBtu/sf/yr

69%

- Building envelope above code minimum
- LED light fixtures
- Magnetic bearing chillers
- Energy recovery systems
- Demand control ventilation
- Daylighting controls

LEED Integrative Process | Optimize Energy Challenge with PCM technology

- Energy modeling software prediction capabilities not satisfactory
- Savings and ROI calculations were rule of thumb based – hard to justify first cost.

LEED Innovation in Design Opportunity for Curriculum

- Phase Change Material Technology
- Applied to one of the learning suites
- Indoor ceiling fans
- Applied to one of the learning suites 2nd floor

ssewieusuise Q

0

Proving thermal storage for heating and cooling buildings through phase change materials.

PCM Application in New Construction

DLR Group THERMAL MASS 2.0 DLR GROUP RESEARCH

PCM Application in New Construction

DLR Group THERMAL MASS 2.0 DLR GROUP RESEARCH

HASSE lication ction P in N w Constri

E Cal

Pac

11

DGI

6 pom

iopem.

Sman Thernal Mass

m

OPCIT

biopen

biopem

bin

A C

(Dpcm

2 pcm

0100

opem

biopom

biopcm. Senart Thermal Mass

biopem

biopcn"

In Themal Mass

G

2 CPC

biopom

biopcm'

DIC

iopu

b

biopc.

biopcm Smart Thermal Mass

biopen' Snart Thermal Mass-

6

bin

6

iopcm Mass

biopcm Smart thermal Mass

biopom'

bicp c m

PCIV Application n New Construction

PCM Application in New Construction

Thermal Mass 2.0 Research Timeline

CURRICULUM INTEGRATION

9.E.C 9.E 1.a

140

---Room Temp ---Room RH ---BioPCM Temp ---BioPCM RH ---Control Temp ---Control RH

Curriculum

- Integration into community
- Project based learning environment (learn by doing)
- Physics first high school

Curriculum Progress

- Agua Fria High School District Science
 Coordinator
 - Fold research into Freshman Physics course
 - Unit on Energy and States of Matter
 - Intro "Box" Experiment
- Introduce concepts in the vein of phenomena learning project
- Research possible on multiple platforms

Curriculum **Next Steps**

- Connect with new high school teachers .
- Grow curriculum objective to span all four grade levels culminating in a senior research capstone project

Freshman Introduction Sophomore Research Experiment

Junior

Senior **Research Report**

AGUA FRIA HIGH SCHOOL **THERMAL COMFORT RESEARCH**

Thermal Comfort Research Factors

Ranges

Upload

25

20 5

15

10

Source: Alam Peudeung

Thermal Comfort Research Criteria

PREDICTED MEAN VOTE VIA THERMAL COMFORT SURVEY

=

COMPLY WITH AHRAE 55-2010

Thermal Comfort Research Sensors

Thermal Comfort Research Cycle

Cooling Mode

- Charge release heat
 - Night flushing through dedicated outdoor air system
- Discharge absorb heat
 - People, equipment, lights and solar radiation during the day

Heating Mode

- Charge absorb heat
 - Charges during the day
- Discharge release heat
 - When building cools off during night, releases heat instead of using HVAC system
- Benefit but not the driving factor

Real Time Data During Construction

Real Time Data 130 **During Construction** 125

Delta between Test & Control

٠

٠

Canyon View HS - Buildings F and B Temperature Trend April 4 - April 24, 2018

Q & A

- Is "Thermal Mass" part of your conversation for building design?
- Do you night purge?
- Is "Thermal Comfort" important to you?