Lessons Learned with New and Proven "Sustainable" Mechanical Systems

Sean Convery, PE Mechanical Principal Cator, Ruma & Associates, Co. sconvery@catorruma.com

University of Colorado Anschutz Medical Campus

Joe Kimitch, LEED AP BD+C Staff Engineer University of Colorado Anschutz Medical Campus joe.kimitch@ucdenver.edu

201

Learning Objectives

- New system applications to achieve higher energy efficiency.
- When to apply new technologies and how the owner should make the decision on the type of system to apply to their building.
- Making a decision on system application: Show Decision Matrix Example to show a variety of options and pros & cons for deciding on the right system for a given building.

Glycol Run-Around Energy Recovery

Heat Pipe

Air-Air Plate Heat Exchanger

Air-Air Plate Heat Exchanger

Intelligent High Efficiency Run Around

Glass/Cell Deck Media (Swamp Cooler)

Fog System

Ultrasonic Humidifier

Heat Exchangers

Flooded Heat Exchangers

Flooded Heat Exchangers

Non-flooded Heat Exchangers

Heating Boilers

Variable Refrigerant Flow Systems (VRF)

Variable Refrigerant Flow Systems (VRF)

Geothermal/Ground Source Technologies

Geothermal/Ground Source Technologies

Distributed Heat Pump System

GROUND LOOP

Geothermal/Ground Source Technologies

Six Pipe Heat Pump System

Overview

Occupancy Sensors

Dual Technology

Uses a combination of both PIR and ultrasonic to detect both major and minor motion in a space.

Planning/Coordination

- Coordinate the location of the components on the shop drawings using the reflected ceiling plans.
- Do not use excessive amount of switch types, keep switches the same type from lab to office.
- Mechanical and electrical engineers working together to produce a coordination drawing.

Interface with HVAC Equipment

- Lighting sequence manual on with auto off.
- HVAC sequence Occupancy sensors are interfaced for HVAC equipment operation.
 - Occupied range 70° to 75°
 - Unoccupied range 65° to 80° with damper and valve closed, reset open as needed.

- All of the sensors are summed as one input to the VAV.
 - Input can be hardwired or through communication, such as BACnet.
- Use corner offices as always occupied areas.
- Use in labs to setback air change rates during unoccupied times.
 - May require a flush mode or spill buttons in labs
- Provide the maintenance staff with the ability to override occupancy in the event of a loss of communication or problem.

Chilled Beams

Chilled Beams

Air Ventilation Supply

Sun Shading Technologies

Sun Shading Technologies

Motorized External Solar Shades

Sun Shading Technologies

Electrochromic Glass

How do you decide?

Systems Decision Matrix

RECOMMENDED SYSTEMS

Order	Option	Description	1st Cost (\$)	1st Cost incl. controls, no plumbing & acoustics	Maintenance Comments	Energy Savings	Usability of Space	Comfort	Other Comments	Image
1st	VAV air system with direct evap cooling and DX cooling and condensing (95% eff) boiler	Similar to baseline, but adding evap cooling to keep DX compressors off line longer throughout the year, and improving efficiency on heating water system.	\$57/GSF = \$1,995,500	\$51/GSF = \$1,785,000	Evap cooling can be in conflict with wood finishes	15%-20%	- Approx. 3,000 of site square footage would be needed for mechanical		- \$ Based on 3 closed offices per HVAC zone - see additive prices below for 2 or 1 closed office per zone - \$ Does not include interlocked operable windows	
2nd	VAV air system with direct and indirect evap cooling and displacement ventilation and condensing (95% eff) boiler	NO Mech Refrigeration. More efficient than item 2. Improving efficiency on heating water system.	\$59/GSF = \$2,065,000	\$53/GSF = \$1,855,000	Evap cooling can be in conflict with wood finishes	30%	Larger ductwork needed since supply air temperature will be higher (65 deg) than system with refrigeration cooling.	10 days a year could have higher temp and humidity	- \$ Based on 3 closed offices per HVAC zone - see additive prices below for 2 or 1 closed office per zone - \$ Does not include interlocked operable windows - Vertical Shafts (Gypsum board) required	
3rd	Chilled Beam System	minimize the amount of building air. This would require some form of chilled water. But for 35,000 sq.ft., not sure how the building could afford a chiled water plant and chilled beams system. Childe beams utilized for cooling allows supply air quantity to be reduced. Requires additional chilled water loop with higher temp. chilled water.	\$65/GSF= \$2,100,000	\$59/GSF= \$2,065,000	"wet" utility going through the space is typically a concern. Complex controls	Approx. 20 25%	Lower floor to floor height possible due to ductwork decrease in ceiling plenum	Good option for offices. AHU recommende d for conference rooms	- Not recommend with direct evap. The direct evap systems requires more sophisticated controls (humidity sensors etc), - \$ Based on 3 closed offices per HVAC zone - - \$ Does not include interiocked operable windows	Code of C
4th	Ground Source Heat Pump (assumed 2nd Recommended System base mechanical system modified for geoexchange)	Vertical bore holes with pipes & thermal grout to conduct energy into the ground. Closed loop glycol from bore holes circulate to heat pumps inside the building. Heat pumps can be distributed like fan coils, or system can be developed with larger heat pumps as part of air handlers and as a hot water boiler for VAV with Reheat system.	\$62/GSF = \$2,170,000	\$56/GSF = \$1,960,000	If Distributed Fan Coils, much more maintenance intensive with compressors throughout the building.	30%	If distributed fan coi units, need more ceiling space than VAV system	Could be noisier than a VAV system if distributed fan coil units.	\$ Based on 3 closed offices per HVAC zone - 5 Does not include interlocked op. windows - Conductivity test ROM = 510,000 - Approx. + 275,000 and temp. parking relocation if parking tot is used as geofield	

Systems Decision Matrix

Order	Option	Description	1st Cost (\$)	1st Cost incl. controls, no plumbing & acoustics	Maintenance Comments	Energy Savings	Usability of Space	Comfort
3rd	Chilled Beam System	minimize the amount of building air. This would require some form of chilled water. But for 35,000 sq.ft., not sure how the building could afford a chilled water plant and chilled beam system. Chilled beams utilized for cooling allows supply air quantity to be reduced. Requires additional chilled water loop with higher temp. chilled water.	\$65/GSF= \$2,100,000	\$59/GSF= \$2,065,000	"wet" utility going through the space is typically a concern. Complex controls	Approx. 20 25%	Lower floor to floor height possible due to ductwork decrease in ceiling plenum	Good option for offices. AHU recommend ed for conference rooms
4th	Ground Source Heat Pump (assumed 2nd Recommended System base mechanical system modified for geoexchange)	Vertical bore holes with pipes & thermal grout to conduct energy into the ground. Closed loop glycol from bore holes circulate to heat pumps inside the building. Heat pumps can be distributed like fan coils, or system can be developed with larger heat pumps as part of air handlers and as a hot water boiler for VAV with Reheat system.	\$62/GSF = \$2,170,000	\$56/GSF = \$1,960,000	If Distributed Fan Coils, much more maintenance intensive with compressors throughout the building.	30%	If distributed fan coil units, need more ceiling space than VAV system	Could be noisier than a VAV system if distributed fan coil units.

