Building An Operational Structure for Persistence

Christopher Benson, PE, CEM, LEED AP

Program Manager, Sustainability & Energy University of Utah, Dept. of Facilities Management

> Jane Guyer, PE, CxA, LEED AP Principal Engineer ETC Group, LLC

Sept 16-18, 2019

Overview

- 1. Setting the Table
- 2. Recognizing Major Contributors to Performance Risk
- 3. A New Model for Persistence
- 4. Other Benefits

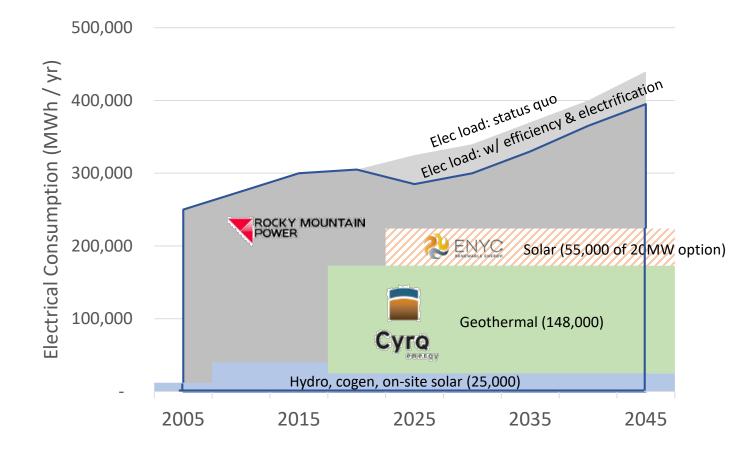
SETTING THE TABLE: Primary Driver for Change

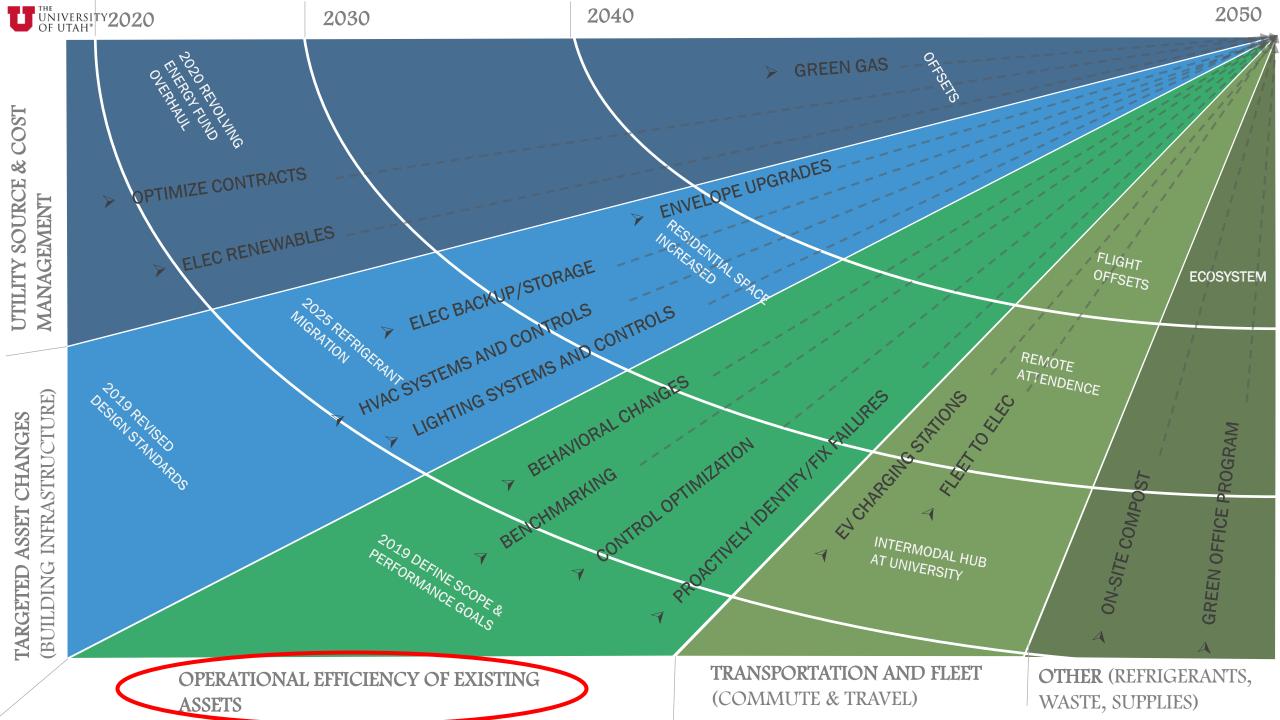
University committed to carbon neutrality by 2050

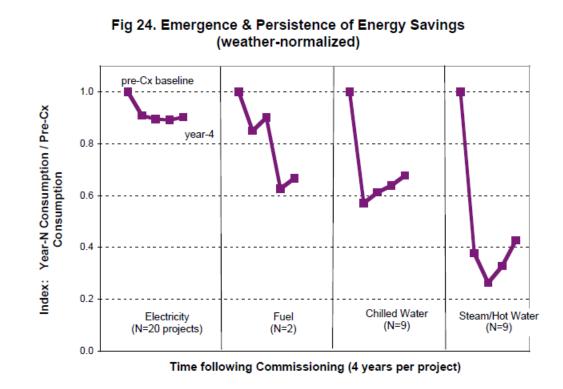
SETTING THE TABLE: University of Utah Scale

MAIN CAMPUS

- 278 buildings (17M sq ft floor area) for classroom, office, research, medical, housing, etc
- Equivalent to 10th largest city in Utah
- \$30M/yr utility bills. 1% of all electricity and gas use in Utah

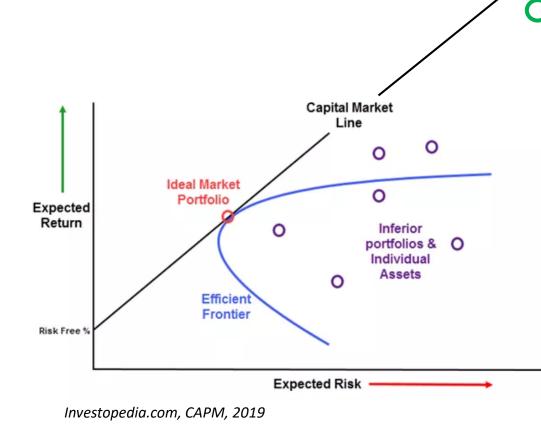





SETTING THE TABLE: Renewables As Portion of Electrical Load

SETTING THE TABLE: Performance Degradation After Commissioning

LBNL/Portland Energy Conservation/Energy Systems Lab Texas A&M, The Cost Effectiveness of Commercial-Buildings Commissioning, 2004



SETTING THE TABLE: Top Operational Efficiency Opportunities Largely Unchanged

$\frac{TOP}{10} = \frac{10}{100} = \frac{100}{100} = \frac{100}{1$

SETTING THE TABLE: Why Aren't Investors Targeting Operational Efficiency More?

EX: Occupancy Scheduling (200% Simple ROI)

RECOGNIZING MAJOR CONTRIBUTORS TO UNIVERSITY PERFORMANCE RISK

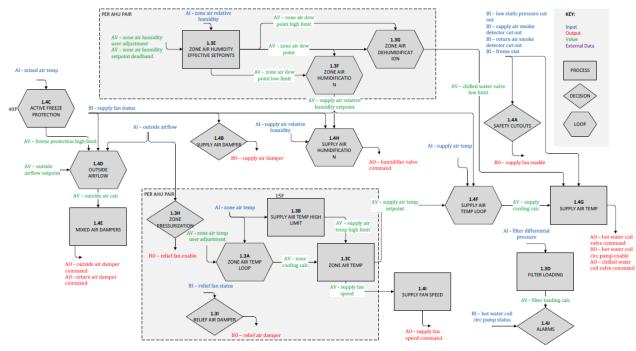


FIGURE – AHU Single Zone Sequence Flow Chart

Total Building Commissioning, University of Utah Marriott Library, Example AHU Sequence of Operation Flow Chart, 2015

- 1. Solutions are too complicated and diverse to manage
- 2. Most projects don't address root cause *management* issues
- 3. No simple way to measure success over time

A NEW MODEL FOR PERSISTENCE

<u>FOCUS</u>: prioritize top opportunities as a portfolio. Phase by stakeholder group and potential value

<u>STANDARDIZE</u>: establish standard solutions for common systems

<u>COMMIT</u>: formally revise/add job functions and protect staff time as management priority

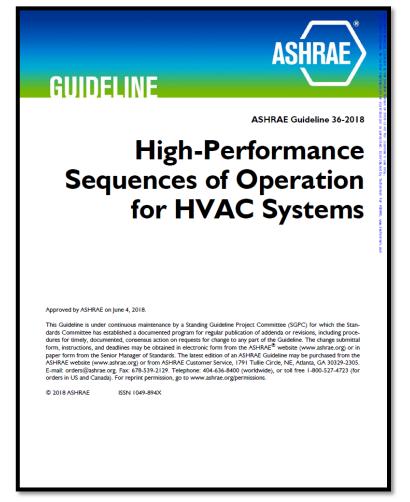
<u>MONITOR</u>: utilize sensors and targeted analytics to monitor success of high-value initiatives over time

A NEW MODEL FOR PERSISTENCE: Prioritizing Top Opportunities as a Portfolio

UofU FM S&E Revolving Loan Prioritization

Benson, 2019-0	05-09														
			Oth	ier Va	lue Cons	ideratic	ns								
rauia i				leatth	safeth asse	aity	Labor Saving	Measure Ease (1- simple fix, 2-some investigation/desi gn, 3-major project)	Measure	Full-Scale Up-	Full-Scale Annual Labor for Full Persistence	Anni	Scale ual Net	nt Ratio	Target Impleme ntation
	Issue type	Measure Name	N	V j			N	project)		front Cost	(FTE)	Valu \$		(SIR) -123.8	
HEATING PLAN	scheduling/shutdowns	operate for elec demand peaking vs base heating Coordinate balancing valves (partially closed) and VFD			r N	r V	N	2	5.0 10.0		0.0	ې د	98,000 22,500		FY20
COOLING PLAN		Coordinate balancing valves (partially closed) and VFD			N	T V	N	1	10.0		-	ې د	7,500		FY20
AHU	optimization	BAS override, reverse control, PID tuning	N N		v	T V	N V	1	5.0	\$ 2,031	- 0.1	ې \$	14,214		FY20
-	supply type/cost	rate tariff changes (time of day or primary vs blended			N	N	N	2	5.0		0.1		15,356		FY21
AHU	optimization	BAS override	N		v	V	N	1	2.0		0.0		17,715		FY20
	optimization	BAS override	V		N	v	N	. 1	2.0				17,715		FY20
		seasonal plant shutdowns	N		N	v	N	3	1.0		0.1	¢	302,400		FY20
AHU	<u>.</u> .	advanced rooftop controller vs standalone controls	N		v	v	Y	2		· · · ·	- 0.1	ч с	179,550	-	FY20
AHU		occupancy scheduling and temp setbacks vs minimal (i			v	v	N	3		\$ 828,495	0.4	ې د	1,587,949		FY20
-	-	blow through, flooded, plugged	N		Y Y	Y	N	2			0.1		92,400		FY20
		seasonal plant shutdowns	N		Y Y	Ŷ	N	3		\$ 94,500	0.2	Ś	340,200		FY20
AHU	<u>.</u> .	external leak (usually noticed and fixed without interv	ent N		Ŷ	N	N	2	4.0	. ,		Ś	11,491		FY21
AHU VALVES		clogged/damaged valve seat, open bypass, loose conn			Ŷ	Y	N	2	4.0		0.4	\$	49,710		FY21
COOLING PLAN		supply water temp setpoint reset w/ increased use of			N	Y	N	3	5.0	· · ·	0.0	· ·	9,375		FY21
AHU	optimization	Supply air temp setpoint reset	N		Y	Y	Y	2	5.0	\$ 697,680	0.7	\$	436,050	2.4	FY20
CHILLER	system issue	variable primary pumping w/ bypass flow control	N		N	Y	N	2			0.0	\$	47,775	2.2	FY21
	, old/undesired technolo		Y		N	Y	N	3			-	\$	70,000	1.9	FY21
		LED vs fluorescent tube	Y		N	Y	N	3	15.0		-	\$	1,159,245	1.5	
	old/undesired technolo		Y		N	Y	N	2			_	Ś	11,250		FY21

RM APPA Building An Operational Structure for Persistence – Sept 16, 2019

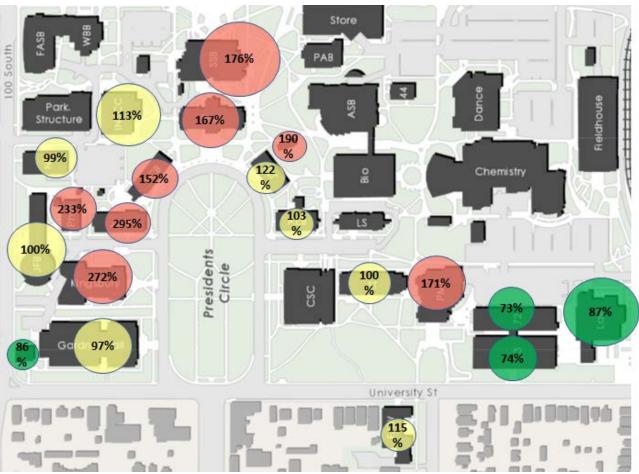


A NEW MODEL FOR PERSISTENCE: Prioritizing Top Opportunities as a Portfolio – FY20 Scope

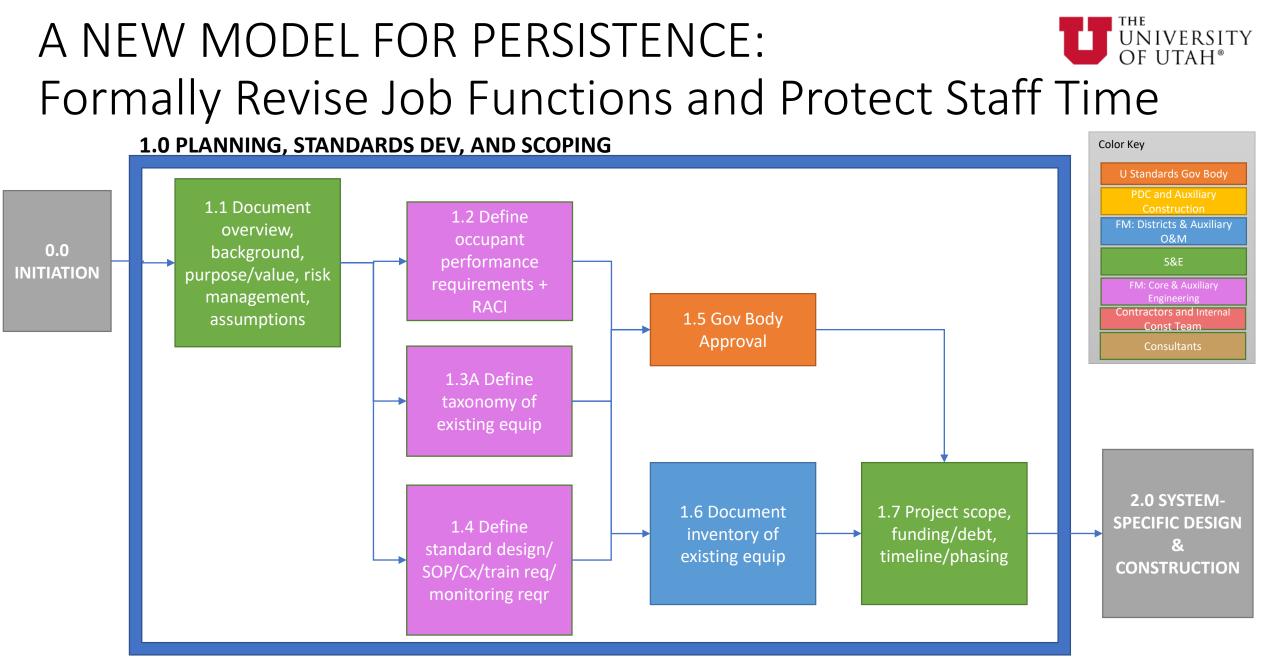
A NEW MODEL FOR PERSISTENCE: Establish Standard Solutions for Common Systems

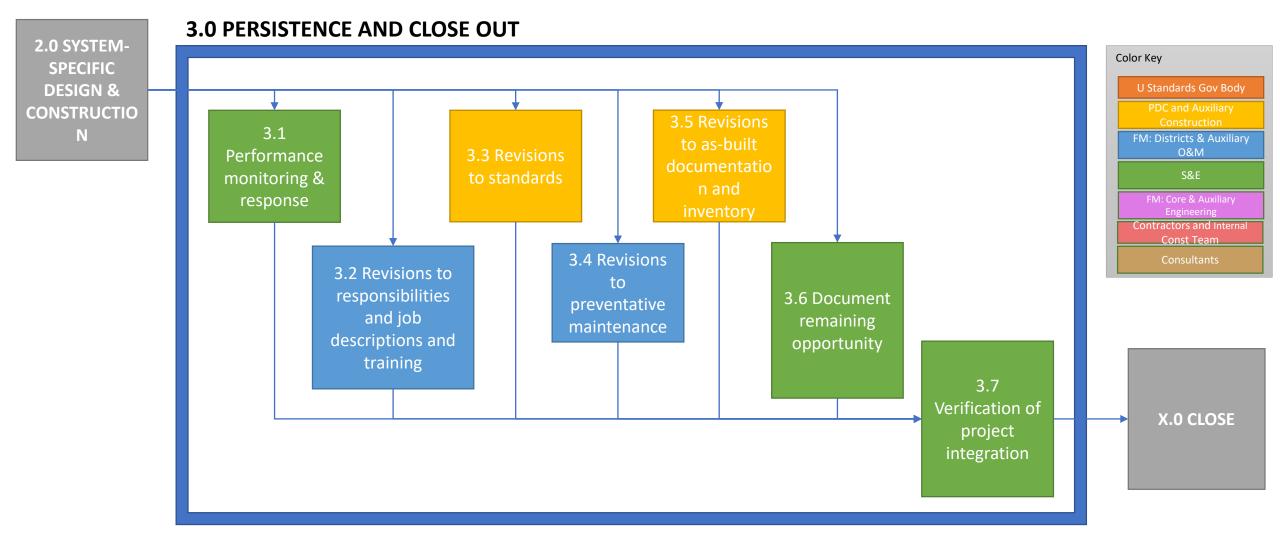
ASHRAE Guideline 36-2018, Cover and VAV reheat excerpt

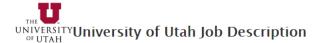
5.6.8.1 Cooling SAT Reset Requests


- a. If the zone temperature exceeds the zone's cooling set point by 3°C (5°F) for 2 minutes and after suppression period due to set point change per Section 5.1.19, send 3 requests.
- b. Else if the zone temperature exceeds the zone's cooling set point by 2°C (3°F) for 2 minutes and after suppression period due to set point change per Section 5.1.19, send 2 requests.
- c. Else if the cooling loop is greater than 95%, send 1 request until the cooling loop is less than 85%.
- d. Else if the cooling loop is less than 95%, send 0 requests.

5.6.8.2 Static Pressure Reset Requests


- a. If the measured airflow is less than 50% of set point while set point is greater than zero and the damper position is greater than 95% for 1 minute, send 3 requests.
- b. Else if the measured airflow is less than 70% of set point while set point is greater than zero and the damper position is greater than 95% for 1 minute, send 2 requests.
- c. Else if the damper position is greater than 95%, send 1 request until the damper position is less than 85%.
- d. Else if the damper position is less than 95%, send 0 requests.


A NEW MODEL FOR PERSISTENCE:


University of Utah District 1 Benchmark Report, 2018

A NEW MODEL FOR PERSISTENCE: UNIVERSITY Formally Revise Job Functions and Protect Staff Time

A NEW MODEL FOR PERSISTENCE: UNIVERSITY Formally Revise Job Functions and Protect Staff Time

Job Title: Sr Engineer

Job Code: 9311

Grade/FLSA: F/Exempt

Updated By: CS, September 2008

Job Summary

Assists the Principal Investigator and/or Department Head in managing the engineering activities of a department. Provides leadership and management of personnel and resources for engineering projects. Provides counsel and support for the definition of engineering goals and objectives.

Qualifications

Bachelor's degree in an Engineering discipline or a related field, or equivalency; three years experience in scientific research or engineering development; demonstrated communication skills; and a commitment to provide excellent customer service required. Experience should include project or organizational management.

Preference is given for an advanced degree in a scientific or engineering field and for publication of original research or project development in peer reviewed scientific journals, recognized professional society or engineering journals.

Applicants must demonstrate the potential ability to perform the essential functions of the job as outlined in the position description.

Disclaimer

This job description has been designed to indicate the general nature and level of work performed by employees within this classification. It is not designed to contain or be interpreted as a comprehensive inventory of all duties, responsibilities and qualifications required of employees assigned to the job

Essential Functions

1. Assists in the management of engineering division functions and operations.

2. Participates in defining and assessing long-term engineering goals of the department, including the proposal of new and original research objectives.

3. Participates in updating the division organizational structure in order to enhance the effectiveness of laboratory operations. Reviews

University of Utah, Job Description for Sr Engineer, 2019-09

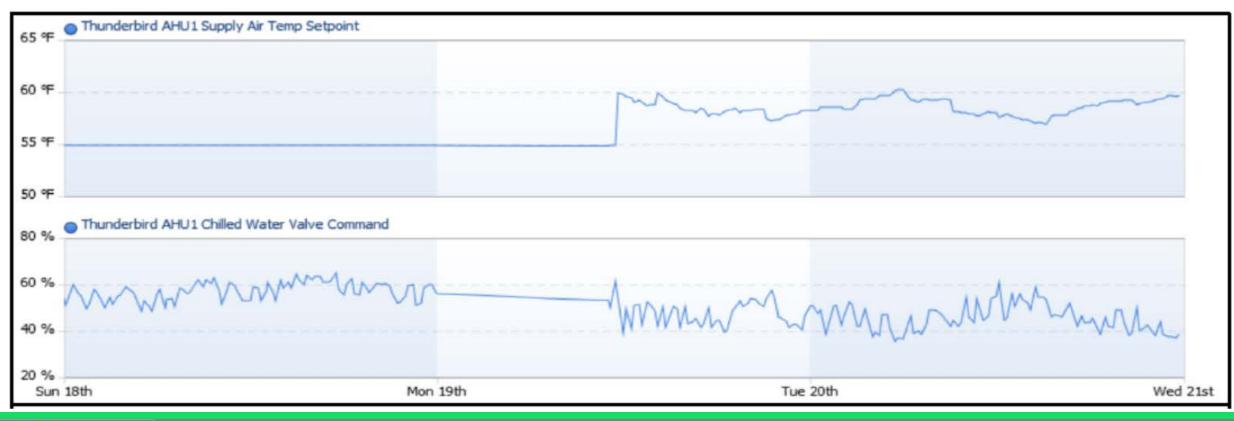
Example Function Change:

4 (NEW). Monthly review performance of top-priority operational efficiency measures. Where degradation has occurred, coordinate...

A NEW MODEL FOR PERSISTENCE: Analytic Example #1: Establishing Building Schedules

Schedule															≔ ★ ⊥ 🖽
							Schedu	les Cal	endars						
New	i	Edit	Tras	ih	C	•	Week of 2	5-Aug-2019		(curVal:	🕑 true	nextVal:	false @ 9:00PM	
Chemistry MBs															
ETC Dentistry Schedule	2	5-Aug Sur	1												
Extracted: Never	26	5-Aug Mor	ו												
Marriot Level 1, 2, 3 Occupa	2	7-Aug Tue													
Marriot Level 4 Book Arts St	2	/ Aug Tue		_											
Marriot Level 4 Occupancy S	28	-Aug Wed	d l												
Marriot Level 4 Vault Occup	2	9-Aug Thu													
Marriot Level 5 Occupancy S		-		_											
Marriot Level 5 Preservation		30-Aug Fr	i												
Marriott VAV schedule 1	3	1-Aug Sa	t												
Thatcher MBs			12a	2a	4a	6a	8a	10a 12	р 2р	4р	6p	8p	10p 12a	3	
TMY Operating Schedule															
TMY Rate Schedule		Priority	Value	Dates			Start	End	Display						New
		1	true	Mon,Tu	ue,Wed,T	⁻ hu,Fri	3:00AM	9:00PM	Occupied						Edit
		2	false	Mon,Tu	ue,Wed,T	⁻ hu,Fri	9:00PM	12:00AM	Unoccupied						Delete
		3	false	Mon,Tu	ue,Wed,T	⁻ hu,Fri	12:00AM	3:00AM	Unoccupied						(Priority ↑)
		4	false	Sun,Sa	t		12:00AM	12:00AM	Unoccupied						

A NEW MODEL FOR PERSISTENCE: Analytic Example #1: Persistent Building Schedules


All Sites Select	•][< May-2019 >	Rules	Options										
All Sites UMCT C	anc	er Center Airside												
		Rule	Duration		Sat	4th Tue 7th	Fri 10th	Mon 13th	Thu 16th	Sun 19th	Wed 22nd	Sat 25th	Tue 28th	Fri 31st
AHU 1 CAV 113 1	>	(i) TU - Occupancy Does Not Match Schedule		426hr										
AHU 2 CAV 207 2	>	(i) TU - Occupancy Does Not Match Schedule		426hr										
AHU 3 CAV 307 2	>	(i) TU - Occupancy Does Not Match Schedule		426hr										
AHU 3 CAV 308 2	>	(i) TU - Occupancy Does Not Match Schedule		426hr										
AHU 3 CAV 309 2	>	(i) TU - Occupancy Does Not Match Schedule		426hr										
CVHU CVHU Rm2312	>	(i) TU - Occupancy Does Not Match Schedule		426hr										
CVHU CVHU Rm2313	>	(i) TU - Occupancy Does Not Match Schedule		426hr										
AHU 4 CAV 401 1	>	i) TU - Occupancy Does Not Match Schedule		93.04hr										
AHU 1 CAV 110 1	>	(i) TU - Occupancy Does Not Match Schedule		71.59hr										
AHU 1 CAV 105 1	>	(i) TU - Occupancy Does Not Match Schedule		71.59hr										
AHU 2 VAV 216 1	>	TU - Occupancy Does Not Match Schedule		71.59hr										
AHU 2 VAV 203 2	>	(j) TU - Occupancy Does Not Match Schedule		71.59hr										
AHU 2 VAV 210 2	>	(i) TU - Occupancy Does Not Match Schedule		71.59hr										
AHU 2 VAV 208 2	>	(i) TU - Occupancy Does Not Match Schedule		71.59hr										
AHU 1 CAV 103 1	>	(i) TU - Occupancy Does Not Match Schedule		71.58hr										
AHU 2 CAV 211 2	>	(i) TU - Occupancy Does Not Match Schedule		71.59hr										
AHU 2 VAV 206 2	>	(i) TU - Occupancy Does Not Match Schedule		71.58hr										

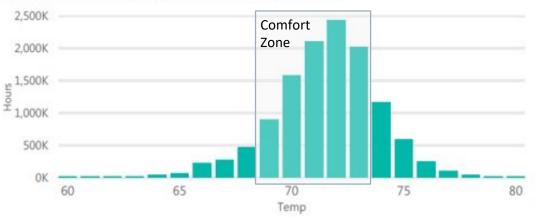
A NEW MODEL FOR PERSISTENCE: Analytic Example #2: Supply Air Temperature Reset

- It saves energy
- Does it impact comfort?

A NEW MODEL FOR PERSISTENCE: Analytic Example #2: Persistent Savings & Maintain Comfort

Swivel Table History				≡ ★ ⊥ ⊑
All Sites Select	Aug-2018	Rules Options		
All Sites Hospital				
Equip	SPACE - ZAT Spt Not Met %	▼	TU - Hot Water Valve Position Avg	
Hospital Ancillary AHU39 CRT39002	\rangle	100%		0.009%
Hospital Ancillary AHU5 CAV05022	\geq	100%		0.034%
Hospital Ancillary AHU5 CAV05023	\rangle	100%		0.032%
Hospital Ancillary AHU5 CAV05032	\geq	100%		0%
Hospital Ancillary AHU5 VAV05028	\rangle	99.5%		99.7%
Hospital Ancillary AHU39 CRT390016	\geq	87.6%		0%
Hospital Ancillary AHU23 CRT23213	\rangle	68.7%		2.4%
Hospital Ancillary AHU23 CRT23223	\geq	54.2%		0%
Hospital Ancillary AHU5 CVR05112	\rangle	42.7%		47.6%
Hospital Ancillary AHU5 CAV05024	\geq	26.2%		41.3%
Hospital Ancillary AHU23 CRT23219	\rangle	25.3%		20.5%
Hospital South Tower AHU29 CAV29213	\geq	21.4%		0%
Hospital Ancillary AHU23 CRT23218	\rangle	17.9%		46.4%
Hospital Ancillary AHU5 VAV05029	\rightarrow	17.8%		12.3%
Hospital South Tower AHU29 CAV29217	\rangle	15.3%		0.147%
Hospital Ancillary AHU5 CVR05104	\rangle	12.2%		33.6%
Hospital Ancillary AHU23 CRT23210	\rangle	11.6%		57.9%
Hospital South Tower AHU29 CAV29221	\rightarrow	8.5%		8.3%
Hospital Ancillary AHU23 CRT23227	\rangle	7.5%		46.6%

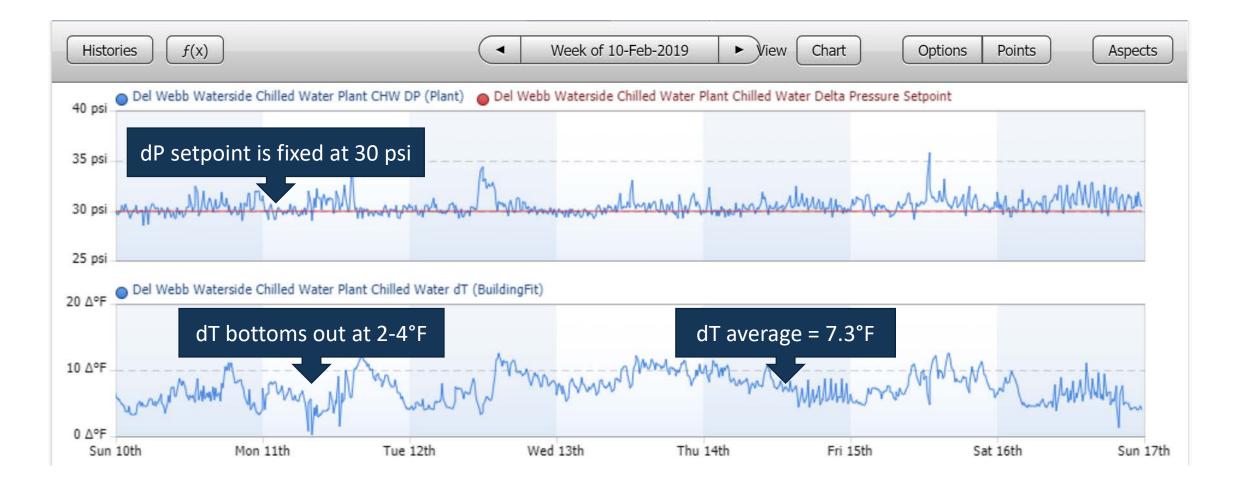
A NEW MODEL FOR PERSISTENCE: Analytic Example #2: Persistent Savings & Maintain Comfort


April 2019

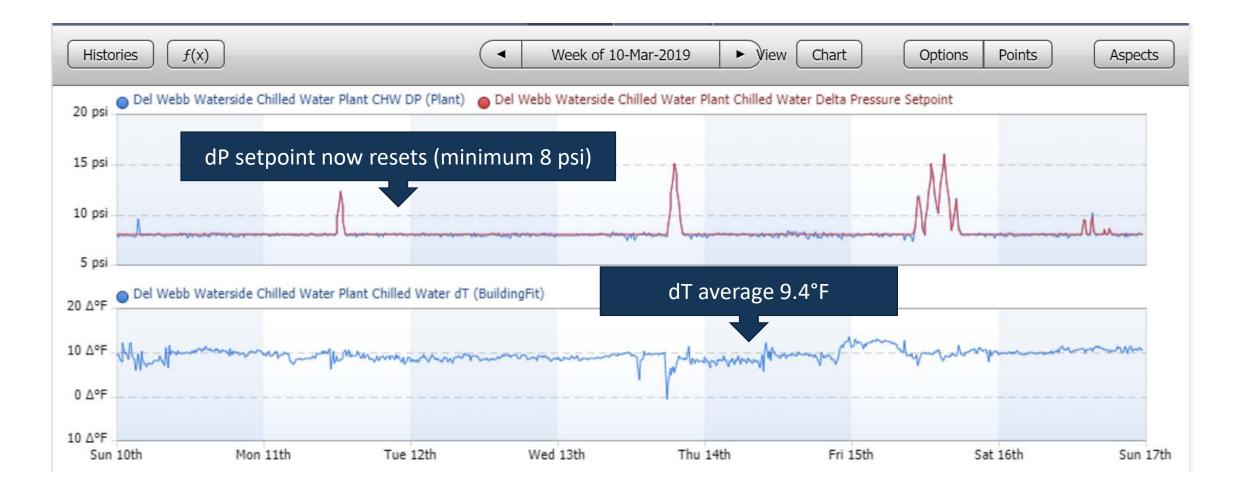
% Time Zones Meet Temperature Setpoint

Distribution of Occupied Zone Temperatures

Comfort Report


Best Opportunities to Improve Comfort

VAV Name	% Time Meeting Temp Setpoint	Average Zone Temp	Cooling Setpoint	Heating Setpoint
AHU-MC-11 VAV-MC11-32 105037	0%	70	76	74
AHU-MC-16 VAV-MC16-2 151002	0%	78	73	71
AHU-MC-16 VAV-MC16-34 151034	0%	76	72	70
AHU-MC-21 VAV-MC21-21 412016	0%	75	69	67
AHU-OSC-1 VAV 2-30 271030	0%	73	69	67


A NEW MODEL FOR PERSISTENCE: Analytic Example #3: Monitoring Control of CHW Plant ΔT

A NEW MODEL FOR PERSISTENCE: Analytic Example #3: Monitoring Control of CHW Plant ΔT

A NEW MODEL FOR PERSISTENCE: Analytic Example #3: Monitoring Control of CHW Plant ΔT

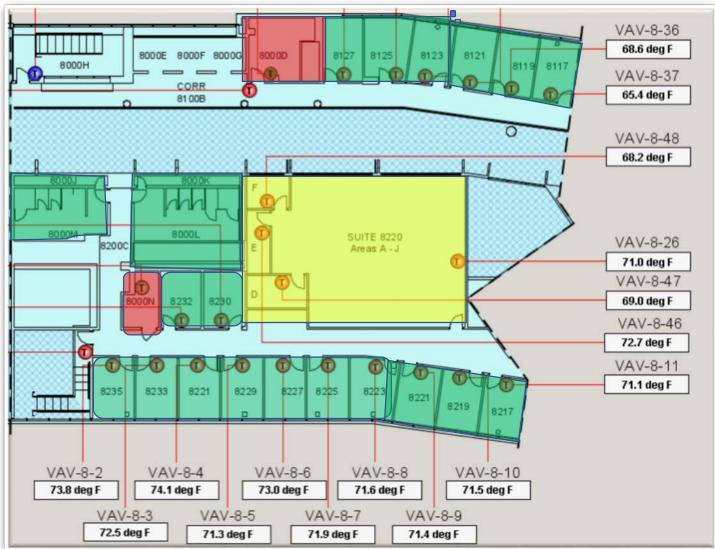
OTHER BENEFITS: Health and Safety Negative Lab Pressure

OTHER BENEFITS: Health and Safety Negative Lab Pressure

OTHER BENEFITS: Analytic Example #4: Negative Lab Pressure

Crown		Rules	dur	Timelines					Targets
Group	-			rimennes	1				Targets
SAV_2233 1 sparks	0	① TU - Negative Pressure Lost	1.5hr					mage (94103)	
- apprice				Sun 3rd	Mon 4th	Tue 5th	Wed 6th	Thu 7th	
3 SAV_4163	0	1 TU - Negative Pressure Lost	11.25hr						
3 sparks				Sun 3rd	Mon 4th	Tue 5th	Wed 6th	Thu 7th	
SAV_4165	0	10 TU - Negative Pressure Lost	88.75hr						
5 sparks				Sun 3rd	Mon 4th	Tue 5th	Wed 6th	Thu 7th	
3AV_4259	0	10 TU - Negative Pressure Lost	6.5hr						
2 sparks		1		Sun 3rd	Mon 4th	Tue 5th	Wed 6th	Thu 7th	
3 SAV_4265	0	10 TU - Negative Pressure Lost	1.5hr						
1 sparks				Sun 3rd	Mon 4th	Tue 5th	Wed 6th	Thu 7th	
3AV-1203	0	1 TU - Negative Pressure Lost	120hr						
5 sparks				Sun 3rd	Mon 4th	Tue 5th	Wed 6th	Thu 7th	

OTHER BENEFITS: Analytic Example #4: Negative Lab Pressure


All 0085-HENRY EYRING CHEMISTRY BUILDING O SAVs North Tower (HEB)																				
Group		Rules	dur	Time	lines															Targets
() SAV_1225A	0	1 TU - Negative Pressure Lost	3.42min																	
1 sparks				1st	3rd	5th	7th	9th	11th	13th	15th	17th	19th	21st	23rd	25th	27th	29th	315	
SAV_2113 1 sparks	0	TU - Negative Pressure Lost	15min																	
				1st	3rd	5th	7th	9th	11th	13th	15th	17th	19th	21st	23rd	25th	27th	29th	31s	
SAV_2115	0	10 TU - Negative Pressure Lost	3.43min																	
1 sparks				1st	3rd	5th	7th	9th	11th	13th	15th	17th	19th	21st	23rd	25th	27th	29th	31s	
6 SAV_2123	0	10 TU - Negative Pressure Lost	3.38min																	
1 sparks				1st	3rd	5th	7th	9th	11th	13th	15th	17th	19th	21st	23rd	25th	27th	29th	31s	
0 SAV_2125	0	10 TU - Negative Pressure Lost	15min																	
1 sparks				1st	3rd	5th	7th	9th	11th	13th	15th	17th	19th	21st	23rd	25th	27th	29th	31s	
O SAV_2165	0	10 TU - Negative Pressure Lost	15min																	
1 sparks				1st	3rd	5th	7th	9th	11th	13th	15th	17th	19th	21st	23rd	25th	27th	29th	31s	

OTHER BENEFITS: Value Adds of New Model

- 1. Reduced cost of design
- 2. Save time and improved quality of O&M with new references for troubleshooting and training
- Process for identifying /prioritizing additional opportunities

Thank you!

Questions?

Christopher Benson, PE, CEM, LEED AP

Program Manager, Sustainability & Energy University of Utah, Dept. of Facilities Management

> Jane Guyer, PE, CxA, LEED AP Principal Engineer ETC Group, LLC jguyer@etcgrp.com 801-232-0883

BONUS SLIDES

OTHER BENEFITS: Occupancy Control of HVAC

OTHER BENEFITS: Savings Measurement

