Reverse Osmosis in a Steam Boiler Plant

Brigham Young University Idaho (BYU-I) Water and Energy Systems Technology (WEST)

Reverse Osmosis Efficiencies

• Outline

- Operational Challenges
- Operational Lessons Learned
- Water Savings
- Energy Savings
- Applications to your Plant
- Questions

Operational Questions\Challenges

Water Pressure and Volume

• Do we have enough water?

Location

- How much space is needed?
- Does it need to be close to the water source?
- Where in the process do we put it?

• New to RO

- How do we run it?
- When do we know to change membranes?
- Should we use a clean in place machine?
- Will it be worth it?

Operational Lessons Learned

Water Pressure and Volume

- We did not have enough water to feed both the boiler and chilled water facilities
- A booster pump was installed on the main water line in the facility to maintain 80 psi

Operational Lessons Learned

Location

- RO units do take up space and need to be serviced.
- Make sure you can remove the membranes when required.
- You will need to have access to a drain for the waste.
- We chose a low traffic area.
- It is installed after the softeners and carbon filter.

Operational Lessons Learned

New to RO

- Be aware of the prefilters and membrane life.
- Get operational training.
- Reassure the operators that it will be different to operate and not to revert back to old plant operations.
- Know how to check the membrane life through differential pressures and permeate quality
- We opted not to use a Clean in Place Machine.

Water & Energy Savings

Savings Methods

- Water & Energy Savings + Chemical Savings
 - Water savings will always result in reduced chemical expenditures
 - Reduced water, energy and chemical usage saves money!
 - This presentation covers specifically a reserse osmosis pre-treatment system and % condensate return – other options may be important for your consideration

Water & Energy Savings

• Water

- Increased Cycles of Concentration (CoC)
 - Steam Production is set by the process
 - Losses can be managed by process improvement
- How?
 - Pre-Treatment (Reverse Osmosis)
 - Recovering steam and condensate
 - Boiler System Mass Balance
 - Blowdown = $\frac{S}{CoC 1}$
 - Feedwater = $BD + S = C_R + MU$
 - $CoC = \frac{MU}{BD} = \frac{S}{B} + 1$
 - S: Steam Production (lb/hr)
 - CoC: Cycles of Concentration
 - BD: Boiler blowdown (lb/hr)
 - C_R: Condensate Return (lb/hr)
 - MU: Pretreatment make-up (lb/hr)

Water & Energy Savings

Energy

- Increased Cycles of Concentration (CoC)
- How?
 - A pound of water in a 110-psi boiler is 344°F and contains 411 BTU
 - A pound of condensate at 180°F contains 148 BTU
 - By reducing blowdown and lost condensate CoC increase and energy losses decrease
 - One cubic foot of natural gas contains about 900 BTU
 - By reducing blowdown and optimizing condensate return, significant fuel savings can be realized

Blowdown Reduction

- Boiler Plant without RO
 - Shown with varying average steam loads

• Boiler Plant with RO Pre-Treatment

Savings Potential

- Water + Energy + Chemical
- Pre-Treating your water with RO will result in savings in energy, water and chemical!!
- Predicting your savings
 - Savings = $D_o \times 1.3452(C_o)^{-1.576}$
 - $D_o = Current$ expenses for Gas, Water and Chemical
 - $C_o = Current$ cycles of concentration in boiler
- Example
 - I produce an average of 18,000 lb/hr of steam in my boiler plant and I operate at 12.0 cycles of concentration.
 - I spend \$1,153,800 each year on gas, water and chemical in this plant
 - My Savings with RO Pre-Treatment are
 - $1,153,800 \times 1.3452 \times (12)^{-1.576} = \$30,912.05$

Savings Potential

- Sizing your Reverse Osmosis System
- A RO system is sized primarily by the product flow rate and the quality of RO feedwater
 - Additional features may increase the cost, but this example will help you size the RO required for your plant
- Determine the RO Size
 - RO Permeate Flow = $S * [(-0.005 \times P_{CR}) + 0.0051)]$
 - S = Current steam production (lb/hr)
 - P_{CR} = Current plant % condensate return
- Example
 - I produce an average of 18,000 lb/hr of steam in my boiler plant and I normally return 70% of my steam as condensate
 - My RO will need to provide a pure water flow rate of:
 - $18,000 \times ((-0.005 \times 0.65) + 0.0051) = 28.8 GPM$

*Includes 2.5 safety factor on RO size, but does not provide redundancy

Summary

- Predicted vs. Actual
- BYU-Idaho Predicted Savings and RO Size
 - BYU-Idaho produced an average of 20,547 lb/hr of steam and operated at 15 cycles of concentration with an annual gas, water and chemical expenditure of \$1,296,000.
 - Savings Equation: $Savings = D_o \times 1.3452(C_o)^{-1.576}$
 - Savings = $1,296,000 \times 1.3452(15)^{-1.576} =$ **24**, **427 %**/*year*
 - RO Payback is less than 3 years.
 - **RO Sizing:** RO Permeate Flow = $S * [(-0.005 \times P_{CR}) + 0.0051)]$
 - RO Permeate Flow = $20,547 \times [(-0.005 \times 0.70) + 0.0051)] = 32.9 GPM$ (@ 0% Condensate Return Size would Be 105 GPM)
- BYU-Idaho Actual Savings and RO Size
 - 80% reduction on blow down from 3 times a day to 3 times a week
 - For the past three years we are averaging a 48% reduction in cost with an annual saving of \$26,900
 - The BYU-Idaho RO system is designed to produce 100GPM which covers the operating condition of a 0% condensate return

Thank You